首页> 美国卫生研究院文献>PLoS Computational Biology >Mechanisms of hysteresis in human brain networks during transitions of consciousness and unconsciousness: Theoretical principles and empirical evidence
【2h】

Mechanisms of hysteresis in human brain networks during transitions of consciousness and unconsciousness: Theoretical principles and empirical evidence

机译:有意识和无意识转换过程中人脑网络的滞后机制:理论原理和经验证据

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Hysteresis, the discrepancy in forward and reverse pathways of state transitions, is observed during changing levels of consciousness. Identifying the underlying mechanism of hysteresis phenomena in the brain will enhance the ability to understand, monitor, and control state transitions related to consciousness. We hypothesized that hysteresis in brain networks shares the same underlying mechanism of hysteresis as other biological and non-biological networks. In particular, we hypothesized that the principle of explosive synchronization, which can mediate abrupt state transitions, would be critical to explaining hysteresis in the brain during conscious state transitions. We analyzed high-density electroencephalogram (EEG) that was acquired in healthy human volunteers during conscious state transitions induced by the general anesthetics sevoflurane or ketamine. We developed a novel method to monitor the temporal evolution of EEG networks in a parameter space, which consists of the strength and topography of EEG-based networks. Furthermore, we studied conditions of explosive synchronization in anatomically informed human brain network models. We identified hysteresis in the trajectory of functional brain networks during state transitions. The model study and empirical data analysis explained various hysteresis phenomena during the loss and recovery of consciousness in a principled way: (1) more potent anesthetics induce a larger hysteresis; (2) a larger range of EEG frequencies facilitates transitions into unconsciousness and impedes the return of consciousness; (3) hysteresis of connectivity is larger than that of EEG power; and (4) the structure and strength of functional brain networks reconfigure differently during the loss vs. recovery of consciousness. We conclude that the hysteresis phenomena observed during the loss and recovery of consciousness are generic network features. Furthermore, the state transitions are grounded in the same principle as state transitions in complex non-biological networks, especially during perturbation. These findings suggest the possibility of predicting and modulating hysteresis of conscious state transitions in large-scale brain networks.
机译:在意识水平改变期间观察到磁滞现象,即状态转换的正向和反向路径中的差异。识别大脑中滞后现象的潜在机制将增强理解,监视和控制与意识有关的状态转换的能力。我们假设脑网络中的磁滞与其他生物和非生物网络具有相同的磁滞潜在机制。特别地,我们假设爆炸性同步的原理可以介导突然的状态转变,这对于解释有意识的状态转变期间大脑中的磁滞至关重要。我们分析了由全身麻醉剂七氟醚或氯胺酮引起的意识状态转变过程中在健康人类志愿者中获得的高密度脑电图(EEG)。我们开发了一种新颖的方法来监视参数空间中脑电网络的时间演变,该方法包括基于脑电的网络的强度和地形。此外,我们在解剖学上已知的人脑网络模型中研究了爆炸同步的条件。我们在状态转换过程中在功能性大脑网络的轨迹中确定了滞后现象。模型研究和经验数据分析以有原则的方式解释了意识丧失和恢复过程中的各种滞后现象:(1)更有效的麻醉剂引起更大的滞后; (2)较大范围的脑电图频率有助于过渡到无意识状态并阻碍意识的恢复; (3)连接的磁滞大于EEG电源的磁滞; (4)在失去意识与恢复意识期间,功能性大脑网络的结构和强度会重新配置。我们得出结论,在意识丧失和恢复过程中观察到的滞后现象是一般网络特征。此外,状态转换以与复杂的非生物网络中状态转换相同的原理为基础,尤其是在摄动期间。这些发现表明预测和调节大规模脑网络中意识状态转变的滞后的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号