首页> 美国卫生研究院文献>PLoS Computational Biology >A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity
【2h】

A Detailed Data-Driven Network Model of Prefrontal Cortex Reproduces Key Features of In Vivo Activity

机译:前额叶皮层的详细的数据驱动的网络模型重现了体内活动的关键特征。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The prefrontal cortex is centrally involved in a wide range of cognitive functions and their impairment in psychiatric disorders. Yet, the computational principles that govern the dynamics of prefrontal neural networks, and link their physiological, biochemical and anatomical properties to cognitive functions, are not well understood. Computational models can help to bridge the gap between these different levels of description, provided they are sufficiently constrained by experimental data and capable of predicting key properties of the intact cortex. Here, we present a detailed network model of the prefrontal cortex, based on a simple computationally efficient single neuron model (simpAdEx), with all parameters derived from in vitro electrophysiological and anatomical data. Without additional tuning, this model could be shown to quantitatively reproduce a wide range of measures from in vivo electrophysiological recordings, to a degree where simulated and experimentally observed activities were statistically indistinguishable. These measures include spike train statistics, membrane potential fluctuations, local field potentials, and the transmission of transient stimulus information across layers. We further demonstrate that model predictions are robust against moderate changes in key parameters, and that synaptic heterogeneity is a crucial ingredient to the quantitative reproduction of in vivo-like electrophysiological behavior. Thus, we have produced a physiologically highly valid, in a quantitative sense, yet computationally efficient PFC network model, which helped to identify key properties underlying spike time dynamics as observed in vivo, and can be harvested for in-depth investigation of the links between physiology and cognition.
机译:前额叶皮层集中参与广泛的认知功能及其在精神疾病中的损害。然而,控制前额神经网络动力学并将其生理,生化和解剖特性与认知功能联系起来的计算原理尚未得到很好的理解。计算模型可以帮助弥合这些不同级别描述之间的鸿沟,只要它们受到实验数据的充分约束并能够预测完整皮质的关键特性即可。在这里,我们基于简单的计算效率高的单个神经元模型(simpAdEx),提出了额额叶皮层的详细网络模型,所有参数均来自体外电生理和解剖学数据。无需额外调整,该模型就可以定量地重现从体内电生理记录到模拟和实验观察到的活动在统计学上无法区分的各种测量方法。这些措施包括峰值列车统计,膜电位波动,局部场电位以及瞬态刺激信息跨层的传输。我们进一步证明,模型预测对关键参数的适度变化具有鲁棒性,并且突触异质性是体内样电生理行为定量复制的关键因素。因此,我们在定量意义上产生了生理上高度有效的,但在计算上有效的PFC网络模型,该模型有助于识别体内观察到的尖峰时间动态的潜在关键特性,并且可以用于深入研究之间的联系。生理学和认知。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号