首页> 美国卫生研究院文献>PLoS Computational Biology >Interplay between Constraints Objectives and Optimality for Genome-Scale Stoichiometric Models
【2h】

Interplay between Constraints Objectives and Optimality for Genome-Scale Stoichiometric Models

机译:基因组规模化学计量模型的约束目标和最优性之间的相互作用

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

High-throughput data generation and genome-scale stoichiometric models have greatly facilitated the comprehensive study of metabolic networks. The computation of all feasible metabolic routes with these models, given stoichiometric, thermodynamic, and steady-state constraints, provides important insights into the metabolic capacities of a cell. How the feasible metabolic routes emerge from the interplay between flux constraints, optimality objectives, and the entire metabolic network of a cell is, however, only partially understood. We show how optimal metabolic routes, resulting from flux balance analysis computations, arise out of elementary flux modes, constraints, and optimization objectives. We illustrate our findings with a genome-scale stoichiometric model of Escherichia coli metabolism. In the case of one flux constraint, all feasible optimal flux routes can be derived from elementary flux modes alone. We found up to 120 million of such optimal elementary flux modes. We introduce a new computational method to compute the corner points of the optimal solution space fast and efficiently. Optimal flux routes no longer depend exclusively on elementary flux modes when we impose additional constraints; new optimal metabolic routes arise out of combinations of elementary flux modes. The solution space of feasible metabolic routes shrinks enormously when additional objectives---e.g. those related to pathway expression costs or pathway length---are introduced. In many cases, only a single metabolic route remains that is both feasible and optimal. This paper contributes to reaching a complete topological understanding of the metabolic capacity of organisms in terms of metabolic flux routes, one that is most natural to biochemists and biotechnologists studying and engineering metabolism.
机译:高通量数据生成和基因组规模的化学计量模型极大地促进了代谢网络的全面研究。在给定化学计量,热力学和稳态约束的情况下,利用这些模型计算所有可行的代谢途径,为深入了解细胞的代谢能力提供了重要依据。然而,从通量约束,最优目标和细胞的整个代谢网络之间的相互作用中如何出现可行的代谢途径。我们显示了通量平衡分析计算产生的最佳代谢途径是如何从基本通量模式,约束和优化目标中产生的。我们用大肠杆菌代谢的基因组规模的化学计量模型说明了我们的发现。在一个通量约束的情况下,所有可行的最佳通量路径都可以仅从基本通量模式中得出。我们发现了多达1.2亿个这样的最佳基本通量模式。我们引入了一种新的计算方法来快速有效地计算最佳解空间的拐角点。当我们施加附加约束时,最佳通量路径不再仅取决于基本通量模式。新的最佳代谢途径来自基本通量模式的组合。当达到其他目标时,可行的代谢途径的解决空间将大大缩小。介绍了与途径表达成本或途径长度有关的那些。在许多情况下,只剩下可行和最佳的单一代谢途径。本文有助于通过代谢通量途径对生物的代谢能力达成完整的拓扑理解,这对于研究和工程化代谢的生物化学家和生物技术人员而言是最自然的。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号