首页> 美国卫生研究院文献>PLoS Computational Biology >Formation and Dynamics of Waves in a Cortical Model of Cholinergic Modulation
【2h】

Formation and Dynamics of Waves in a Cortical Model of Cholinergic Modulation

机译:胆碱能调制的皮层模型中波的形成和动力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Acetylcholine (ACh) is a regulator of neural excitability and one of the neurochemical substrates of sleep. Amongst the cellular effects induced by cholinergic modulation are a reduction in spike-frequency adaptation (SFA) and a shift in the phase response curve (PRC). We demonstrate in a biophysical model how changes in neural excitability and network structure interact to create three distinct functional regimes: localized asynchronous, traveling asynchronous, and traveling synchronous. Our results qualitatively match those observed experimentally. Cortical activity during slow wave sleep (SWS) differs from that during REM sleep or waking states. During SWS there are traveling patterns of activity in the cortex; in other states stationary patterns occur. Our model is a network composed of Hodgkin-Huxley type neurons with a M-current regulated by ACh. Regulation of ACh level can account for dynamical changes between functional regimes. Reduction of the magnitude of this current recreates the reduction in SFA the shift from a type 2 to a type 1 PRC observed in the presence of ACh. When SFA is minimal (in waking or REM sleep state, high ACh) patterns of activity are localized and easily pinned by network inhomogeneities. When SFA is present (decreasing ACh), traveling waves of activity naturally arise. A further decrease in ACh leads to a high degree of synchrony within traveling waves. We also show that the level of ACh determines how sensitive network activity is to synaptic heterogeneity. These regimes may have a profound functional significance as stationary patterns may play a role in the proper encoding of external input as memory and traveling waves could lead to synaptic regularization, giving unique insights into the role and significance of ACh in determining patterns of cortical activity and functional differences arising from the patterns.
机译:乙酰胆碱(ACh)是神经兴奋性的调节剂,是睡眠的神经化学底物之一。在胆碱能调节引起的细胞效应中,尖峰频率适应性(SFA)的降低和相位响应曲线(PRC)的移动。我们在生物物理模型中演示了神经兴奋性和网络结构的变化如何相互作用以创建三个不同的功能机制:局部异步,行进异步和行进同步。我们的结果在质量上与实验观察到的相符。慢波睡眠(SWS)期间的皮质活动与REM睡眠或苏醒状态期间的皮质活动不同。在SWS期间,皮层中存在活动的传播模式;在其他状态下,会发生固定模式。我们的模型是一个由Hodgkin-Huxley型神经元组成的网络,其M电流受ACh调节。 ACh水平的调节可以解释功能机制之间的动态变化。该电流幅度的减小使SFA减小,从而使存在ACh时从2型PRC转变为1型PRC。当SFA最小时(在清醒或REM睡眠状态下,ACh较高),活动模式将被本地化,并且很容易被网络不均匀性所抑制。当存在SFA(ACh降低)时,自然会产生活动的行波。 ACh的进一步降低导致行波内高度同步。我们还表明,ACh的水平决定了网络活动对突触异质性的敏感程度。这些机制可能具有深远的功能意义,因为固定模式可能在外部输入的正确编码中发挥作用,因为记忆和行波可能导致突触规则化,从而使ACh在确定皮层活动模式和功能方面的作用和重要性具有独特见解。模式产生的功能差异。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号