首页> 美国卫生研究院文献>PLoS Computational Biology >Distal Spike Initiation Zone Location Estimation by Morphological Simulation of Ionic Current Filtering Demonstrated in a Novel Model of an Identified Drosophila Motoneuron
【2h】

Distal Spike Initiation Zone Location Estimation by Morphological Simulation of Ionic Current Filtering Demonstrated in a Novel Model of an Identified Drosophila Motoneuron

机译:通过确定的果蝇Momoturon的新型模型中所示的离子流过滤的形态学模拟估算远端尖峰起始区的位置。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Studying ion channel currents generated distally from the recording site is difficult because of artifacts caused by poor space clamp and membrane filtering. A computational model can quantify artifact parameters for correction by simulating the currents only if their exact anatomical location is known. We propose that the same artifacts that confound current recordings can help pinpoint the source of those currents by providing a signature of the neuron’s morphology. This method can improve the recording quality of currents initiated at the spike initiation zone (SIZ) that are often distal to the soma in invertebrate neurons. Drosophila being a valuable tool for characterizing ion currents, we estimated the SIZ location and quantified artifacts in an identified motoneuron, aCC/MN1-Ib, by constructing a novel multicompartmental model. Initial simulation of the measured biophysical channel properties in an isopotential Hodgkin-Huxley type neuron model partially replicated firing characteristics. Adding a second distal compartment, which contained spike-generating Na+ and K+ currents, was sufficient to simulate aCC’s in vivo activity signature. Matching this signature using a reconstructed morphology predicted that the SIZ is on aCC’s primary axon, 70 μm after the most distal dendritic branching point. From SIZ to soma, we observed and quantified selective morphological filtering of fast activating currents. Non-inactivating K+ currents are filtered ∼3 times less and despite their large magnitude at the soma they could be as distal as Na+ currents. The peak of transient component (NaT) of the voltage-activated Na+ current is also filtered more than the magnitude of slower persistent component (NaP), which can contribute to seizures. The corrected NaP/NaT ratio explains the previously observed discrepancy when the same channel is expressed in different cells. In summary, we used an in vivo signature to estimate ion channel location and recording artifacts, which can be applied to other neurons.
机译:由于空间钳位差和膜过滤不良会导致伪影,因此很难研究从记录位置向远端产生的离子通道电流。只有当已知电流的确切解剖位置时,计算模型才能通过模拟电流来量化伪影参数以进行校正。我们建议,混淆电流记录的伪像可以通过提供神经元形态的特征来帮助查明这些电流的来源。此方法可以提高在无脊椎动物神经元中通常位于躯体远端的尖峰起始区(SIZ)处起始的电流的记录质量。果蝇是表征离子电流的宝贵工具,我们通过构建新颖的多隔室模型,估计了确定的运动神经元aCC / MN1-Ib中的SIZ位置并量化了伪影。在等势霍奇金-赫克斯利型神经元模型中测量的生物物理通道特性的初始模拟部分复制了放电特性。添加第二个远端隔室,其中包含产生尖峰的Na + 和K + 电流,足以模拟aCC的体内活性特征。使用重建的形态匹配此特征,可以预测SIZ位于aCC的主要轴突上,最远的树突分支点之后70μm。从SIZ到躯体,我们观察并量化了快速激活电流的选择性形态滤波。非灭活的K + 电流被过滤的次数减少了约3倍,尽管它们在体中的幅度很大,但它们可能与Na + 电流一样远。电压激活的Na + 电流的瞬态分量(NaT)的峰值也比较慢的持久性分量(NaP)的幅度过滤得更多,后者可能有助于癫痫发作。校正后的NaP / NaT比值解释了在不同细胞中表达相同通道时先前观察到的差异。总而言之,我们使用了体内特征来估计离子通道的位置并记录伪像,这些伪像可以应用于其他神经元。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号