首页> 美国卫生研究院文献>PLoS Computational Biology >Speed Controls in Translating Secretory Proteins in Eukaryotes - an Evolutionary Perspective
【2h】

Speed Controls in Translating Secretory Proteins in Eukaryotes - an Evolutionary Perspective

机译:真核生物中分泌蛋白翻译的速度控制-进化观点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Protein translation is the most expensive operation in dividing cells from bacteria to humans. Therefore, managing the speed and allocation of resources is subject to tight control. From bacteria to humans, clusters of relatively rare tRNA codons at the N′-terminal of mRNAs have been implicated in attenuating the process of ribosome allocation, and consequently the translation rate in a broad range of organisms. The current interpretation of “slow” tRNA codons does not distinguish between protein translations mediated by free- or endoplasmic reticulum (ER)-bound ribosomes. We demonstrate that proteins translated by free- or ER-bound ribosomes exhibit different overall properties in terms of their translation efficiency and speed in yeast, fly, plant, worm, bovine and human. We note that only secreted or membranous proteins with a Signal peptide (SP) are specified by segments of “slow” tRNA at the N′-terminal, followed by abundant codons that are considered “fast.” Such profiles apply to 3100 proteins of the human proteome that are composed of secreted and signal peptide (SP)-assisted membranous proteins. Remarkably, the bulks of the proteins (12,000), or membranous proteins lacking SP (3400), do not have such a pattern. Alternation of “fast” and “slow” codons was found also in proteins that translocate to mitochondria through transit peptides (TP). The differential clusters of tRNA adapted codons is not restricted to the N′-terminal of transcripts. Specifically, Glycosylphosphatidylinositol (GPI)-anchored proteins are unified by clusters of low adapted tRNAs codons at the C′-termini. Furthermore, selection of amino acids types and specific codons was shown as the driving force which establishes the translation demands for the secretory proteome. We postulate that “hard-coded” signals within the secretory proteome assist the steps of protein maturation and folding. Specifically, “speed control” signals for delaying the translation of a nascent protein fulfill the co- and post-translational stages such as membrane translocation, proteins processing and folding.
机译:蛋白质翻译是将细胞从细菌分裂到人类的最昂贵的操作。因此,管理速度和资源分配需要严格控制。从细菌到人类,在mRNA的N'端存在相对稀有的tRNA密码子簇,这与减弱核糖体的分配过程有关,从而减弱了广泛生物体的翻译率。当前对“慢” tRNA密码子的解释不能区分由游离或内质网(ER)结合的核糖体介导的蛋白质翻译。我们证明,由自由结合或ER结合的核糖体翻译的蛋白质在酵母,果蝇,植物,蠕虫,牛和人类中的翻译效率和速度方面表现出不同的总体特性。我们注意到,只有带有信号肽(SP)的分泌或膜蛋白由N'端的“慢” tRNA片段指定,其后是被认为是“快速”的丰富密码子。这种概况适用于人类蛋白质组的3100种蛋白质,该蛋白质由分泌的和信号肽(SP)辅助的膜蛋白组成。值得注意的是,大部分蛋白质(12,000)或缺少SP的膜状蛋白质(3400)没有这种模式。在通过转运肽(TP)转运到线粒体的蛋白质中也发现了“快速”和“慢速”密码子的交替。 tRNA适应密码子的差异簇不限于转录本的N'-末端。具体而言,糖基磷脂酰肌醇(GPI)锚定的蛋白质由C'-末端的低适应性tRNA密码子簇统一。此外,氨基酸类型和特定密码子的选择被显示为建立分泌蛋白质组的翻译需求的驱动力。我们假设分泌蛋白质组中的“硬编码”信号有助于蛋白质成熟和折叠的步骤。具体而言,用于延迟新生蛋白质翻译的“速度控制”信号完成了共翻译和翻译后阶段,例如膜移位,蛋白质加工和折叠。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号