首页> 美国卫生研究院文献>PLoS Computational Biology >Neuronal Spike Timing Adaptation Described with a Fractional Leaky Integrate-and-Fire Model
【2h】

Neuronal Spike Timing Adaptation Described with a Fractional Leaky Integrate-and-Fire Model

机译:用分数泄漏积分和点火模型描述神经元穗时间适应。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The voltage trace of neuronal activities can follow multiple timescale dynamics that arise from correlated membrane conductances. Such processes can result in power-law behavior in which the membrane voltage cannot be characterized with a single time constant. The emergent effect of these membrane correlations is a non-Markovian process that can be modeled with a fractional derivative. A fractional derivative is a non-local process in which the value of the variable is determined by integrating a temporal weighted voltage trace, also called the memory trace. Here we developed and analyzed a fractional leaky integrate-and-fire model in which the exponent of the fractional derivative can vary from 0 to 1, with 1 representing the normal derivative. As the exponent of the fractional derivative decreases, the weights of the voltage trace increase. Thus, the value of the voltage is increasingly correlated with the trajectory of the voltage in the past. By varying only the fractional exponent, our model can reproduce upward and downward spike adaptations found experimentally in neocortical pyramidal cells and tectal neurons in vitro. The model also produces spikes with longer first-spike latency and high inter-spike variability with power-law distribution. We further analyze spike adaptation and the responses to noisy and oscillatory input. The fractional model generates reliable spike patterns in response to noisy input. Overall, the spiking activity of the fractional leaky integrate-and-fire model deviates from the spiking activity of the Markovian model and reflects the temporal accumulated intrinsic membrane dynamics that affect the response of the neuron to external stimulation.
机译:神经元活动的电压轨迹可以遵循由相关的膜电导引起的多个时标动态。这样的过程可能导致幂律行为,其中膜电压不能用单个时间常数来表征。这些膜相关性的涌现效应是可以用分数导数建模的非马尔可夫过程。分数导数是一个非局部过程,其中变量的值通过积分时间加权电压曲线(也称为存储曲线)来确定。在这里,我们开发并分析了分数泄漏积分和点火模型,其中分数导数的指数可以在0到1之间变化,其中1代表正态导数。随着分数导数的指数减小,电压走线的权重增加。因此,过去的电压值与电压的轨迹越来越相关。通过仅改变分数指数,我们的模型可以重现实验中在新皮层锥体细胞和顶盖神经元中发现的向上和向下的尖峰适应。该模型还产生具有较长的第一尖峰延迟的尖峰,并且具有幂律分布的高尖峰间可变性。我们进一步分析了尖峰适应以及对噪声和振荡输入的响应。分数模型响应于噪声输入而生成可靠的尖峰模式。总体而言,分数泄漏积分和点火模型的峰值活动与马尔可夫模型的峰值活动有所不同,反映了影响神经元对外部刺激的反应的时间累积内在膜动力学。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号