首页> 美国卫生研究院文献>PLoS Computational Biology >Multiple Model-Informed Open-Loop Control of Uncertain Intracellular Signaling Dynamics
【2h】

Multiple Model-Informed Open-Loop Control of Uncertain Intracellular Signaling Dynamics

机译:不确定细胞内信号动力学的多模型信息开环控制

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Computational approaches to tune the activation of intracellular signal transduction pathways both predictably and selectively will enable researchers to explore and interrogate cell biology with unprecedented precision. Techniques to control complex nonlinear systems typically involve the application of control theory to a descriptive mathematical model. For cellular processes, however, measurement assays tend to be too time consuming for real-time feedback control and models offer rough approximations of the biological reality, thus limiting their utility when considered in isolation. We overcome these problems by combining nonlinear model predictive control with a novel adaptive weighting algorithm that blends predictions from multiple models to derive a compromise open-loop control sequence. The proposed strategy uses weight maps to inform the controller of the tendency for models to differ in their ability to accurately reproduce the system dynamics under different experimental perturbations (i.e. control inputs). These maps, which characterize the changing model likelihoods over the admissible control input space, are constructed using preexisting experimental data and used to produce a model-based open-loop control framework. In effect, the proposed method designs a sequence of control inputs that force the signaling dynamics along a predefined temporal response without measurement feedback while mitigating the effects of model uncertainty. We demonstrate this technique on the well-known Erk/MAPK signaling pathway in T cells. In silico assessment demonstrates that this approach successfully reduces target tracking error by 52% or better when compared with single model-based controllers and non-adaptive multiple model-based controllers. In vitro implementation of the proposed approach in Jurkat cells confirms a 63% reduction in tracking error when compared with the best of the single-model controllers. This study provides an experimentally-corroborated control methodology that utilizes the knowledge encoded within multiple mathematical models of intracellular signaling to design control inputs that effectively direct cell behavior in open-loop.
机译:可预测地和选择性地调节细胞内信号转导途径的激活的计算方法将使研究人员能够以前所未有的精度探索和审讯细胞生物学。控制复杂非线性系统的技术通常涉及将控制理论应用于描述性数学模型。然而,对于细胞过程而言,测量分析对于实时反馈控制而言往往过于耗时,并且模型提供了生物现实的粗略近似,因此当单独考虑时限制了其实用性。我们通过将非线性模型预测控制与新颖的自适应加权算法相结合来克服这些问题,该算法混合了来自多个模型的预测以得出折衷的开环控制序列。所提出的策略使用权重图来告知控制器模型在不同实验扰动(即控制输入)下准确再现系统动力学能力不同的趋势。这些映射图表征了在允许的控制输入空间上变化的模型可能性,这些映射图是使用预先存在的实验数据构建的,并用于生成基于模型的开环控制框架。实际上,所提出的方法设计了一系列控制输入,这些输入迫使信号动力学沿着预定义的时间响应而没有测量反馈,同时减轻了模型不确定性的影响。我们在T细胞中众所周知的Erk / MAPK信号通路上证明了这一技术。计算机评估表明,与基于单个模型的控制器和非自适应多个基于模型的控制器相比,该方法成功地将目标跟踪误差降低了52%或更好。与最佳的单模型控制器相比,在Jurkat细胞中对拟议方法的体外实施证实跟踪误差降低了63%。这项研究提供了一种实验证实的控制方法,该方法利用了细胞内信号传递的多个数学模型中编码的知识来设计有效控制开环中细胞行为的控制输入。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号