首页> 美国卫生研究院文献>PLoS Computational Biology >Combined Role of Seizure-Induced Dendritic Morphology Alterations and Spine Loss in Newborn Granule Cells with Mossy Fiber Sprouting on the Hyperexcitability of a Computer Model of the Dentate Gyrus
【2h】

Combined Role of Seizure-Induced Dendritic Morphology Alterations and Spine Loss in Newborn Granule Cells with Mossy Fiber Sprouting on the Hyperexcitability of a Computer Model of the Dentate Gyrus

机译:癫痫发作诱发的树突形态学改变和新生的颗粒细胞与苔藓纤维发芽对齿状回计算机模型的过度兴奋性的脊柱丢失的联合作用。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Temporal lobe epilepsy strongly affects hippocampal dentate gyrus granule cells morphology. These cells exhibit seizure-induced anatomical alterations including mossy fiber sprouting, changes in the apical and basal dendritic tree and suffer substantial dendritic spine loss. The effect of some of these changes on the hyperexcitability of the dentate gyrus has been widely studied. For example, mossy fiber sprouting increases the excitability of the circuit while dendritic spine loss may have the opposite effect. However, the effect of the interplay of these different morphological alterations on the hyperexcitability of the dentate gyrus is still unknown. Here we adapted an existing computational model of the dentate gyrus by replacing the reduced granule cell models with morphologically detailed models coming from three-dimensional reconstructions of mature cells. The model simulates a network with 10% of the mossy fiber sprouting observed in the pilocarpine (PILO) model of epilepsy. Different fractions of the mature granule cell models were replaced by morphologically reconstructed models of newborn dentate granule cells from animals with PILO-induced Status Epilepticus, which have apical dendritic alterations and spine loss, and control animals, which do not have these alterations. This complex arrangement of cells and processes allowed us to study the combined effect of mossy fiber sprouting, altered apical dendritic tree and dendritic spine loss in newborn granule cells on the excitability of the dentate gyrus model. Our simulations suggest that alterations in the apical dendritic tree and dendritic spine loss in newborn granule cells have opposing effects on the excitability of the dentate gyrus after Status Epilepticus. Apical dendritic alterations potentiate the increase of excitability provoked by mossy fiber sprouting while spine loss curtails this increase.
机译:颞叶癫痫严重影响海马齿状回颗粒细胞的形态。这些细胞表现出癫痫发作引起的解剖学改变,包括长满苔藓的纤维发芽,根尖和基底树突树的变化,并遭受实质性的树突棘损失。这些变化中的一些对齿状回的过度兴奋性的影响已被广泛研究。例如,长满苔藓的纤维发芽会增加电路的兴奋性,而树突状脊柱丢失可能会产生相反的效果。但是,这些不同的形态变化的相互作用对齿状回的过度兴奋性的影响仍是未知的。在这里,我们通过用来自成熟细胞的三维重建的形态学详细模型代替简化的颗粒细胞模型,来适应齿状回的现有计算模型。该模型模拟的网络具有在毛果芸香碱(PILO)癫痫模型中观察到的10%的苔藓纤维发芽。成熟的颗粒细胞模型的不同部分被具有PILO诱导的癫痫持续状态的动物的形态学重建的新生齿状颗粒细胞模型所替代,这些模型具有顶端树突改变和脊柱丢失,而对照组动物则没有这些改变。细胞和过程的这种复杂排列使我们能够研究苔藓纤维发芽,根尖树突树改变和新生颗粒细胞中树突棘损失对齿状回模型兴奋性的综合影响。我们的模拟结果表明,癫痫持续状态对新生颗粒细胞的根尖树突状结构的改变和树突状脊柱的丢失对齿状回的兴奋性具有相反的影响。顶端的树突状变化增强了苔藓纤维发芽引起的兴奋性增加,而脊柱丢失限制了这种增加。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号