首页> 美国卫生研究院文献>PLoS Computational Biology >A Family of Algorithms for Computing Consensus about Node State from Network Data
【2h】

A Family of Algorithms for Computing Consensus about Node State from Network Data

机译:从网络数据中计算关于节点状态的共识的一系列算法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biological and social networks are composed of heterogeneous nodes that contribute differentially to network structure and function. A number of algorithms have been developed to measure this variation. These algorithms have proven useful for applications that require assigning scores to individual nodes–from ranking websites to determining critical species in ecosystems–yet the mechanistic basis for why they produce good rankings remains poorly understood. We show that a unifying property of these algorithms is that they quantify consensus in the network about a node's state or capacity to perform a function. The algorithms capture consensus by either taking into account the number of a target node's direct connections, and, when the edges are weighted, the uniformity of its weighted in-degree distribution (breadth), or by measuring net flow into a target node (depth). Using data from communication, social, and biological networks we find that that how an algorithm measures consensus–through breadth or depth– impacts its ability to correctly score nodes. We also observe variation in sensitivity to source biases in interaction/adjacency matrices: errors arising from systematic error at the node level or direct manipulation of network connectivity by nodes. Our results indicate that the breadth algorithms, which are derived from information theory, correctly score nodes (assessed using independent data) and are robust to errors. However, in cases where nodes “form opinions” about other nodes using indirect information, like reputation, depth algorithms, like Eigenvector Centrality, are required. One caveat is that Eigenvector Centrality is not robust to error unless the network is transitive or assortative. In these cases the network structure allows the depth algorithms to effectively capture breadth as well as depth. Finally, we discuss the algorithms' cognitive and computational demands. This is an important consideration in systems in which individuals use the collective opinions of others to make decisions.
机译:生物和社会网络由异构节点组成,这些异构节点对网络结构和功能的贡献不同。已经开发了许多算法来测量这种变化。事实证明,这些算法对于需要将分数分配给各个节点(从排名网站到确定生态系统中的关键物种)的应用程序非常有用,但对于为什么它们能产生良好排名的机制基础仍然知之甚少。我们证明了这些算法的统一属性是它们量化了网络中关于节点状态或执行功能的能力的共识。该算法通过考虑目标节点的直接连接数,以及在对边缘进行加权时,加权其度内分布(宽度)的均匀性,或通过测量流入目标节点的净流量(深度)来捕获共识。 )。使用来自通信,社会和生物网络的数据,我们发现算法如何通过广度或深度来衡量共识,这会影响其正确对节点进行评分的能力。我们还观察到了对交互/邻接矩阵中的源偏差的敏感性的变化:由节点级别的系统错误或节点对网络连接的直接操纵而引起的错误。我们的结果表明,从信息论推导的广度算法可以正确地对节点评分(使用独立数据进行评估),并且对错误具有鲁棒性。但是,在节点使用间接信息(例如信誉)对其他节点“形成意见”的情况下,需要深度算法(例如特征向量中心性)。一个警告是,除非网络是可传递的或可分类的,否则特征向量中心性对错误的鲁棒性不强。在这些情况下,网络结构允许深度算法有效地捕获宽度和深度。最后,我们讨论了算法的认知和计算需求。这是个人使用他人的集体意见进行决策的系统中的重要考虑因素。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号