首页> 美国卫生研究院文献>PLoS Computational Biology >Signatures of Arithmetic Simplicity in Metabolic Network Architecture
【2h】

Signatures of Arithmetic Simplicity in Metabolic Network Architecture

机译:代谢网络体系结构中算术简单性的签名

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Metabolic networks perform some of the most fundamental functions in living cells, including energy transduction and building block biosynthesis. While these are the best characterized networks in living systems, understanding their evolutionary history and complex wiring constitutes one of the most fascinating open questions in biology, intimately related to the enigma of life's origin itself. Is the evolution of metabolism subject to general principles, beyond the unpredictable accumulation of multiple historical accidents? Here we search for such principles by applying to an artificial chemical universe some of the methodologies developed for the study of genome scale models of cellular metabolism. In particular, we use metabolic flux constraint-based models to exhaustively search for artificial chemistry pathways that can optimally perform an array of elementary metabolic functions. Despite the simplicity of the model employed, we find that the ensuing pathways display a surprisingly rich set of properties, including the existence of autocatalytic cycles and hierarchical modules, the appearance of universally preferable metabolites and reactions, and a logarithmic trend of pathway length as a function of input/output molecule size. Some of these properties can be derived analytically, borrowing methods previously used in cryptography. In addition, by mapping biochemical networks onto a simplified carbon atom reaction backbone, we find that properties similar to those predicted for the artificial chemistry hold also for real metabolic networks. These findings suggest that optimality principles and arithmetic simplicity might lie beneath some aspects of biochemical complexity.
机译:代谢网络在活细胞中执行一些最基本的功能,包括能量转导和生物合成模块。尽管这些是生命系统中特征最丰富的网络,但了解它们的进化历史和复杂的布线构成了生物学中最引人入胜的开放式问题之一,与生命起源本身的奥秘息息相关。新陈代谢的演变是否遵循一般原则,而不是多次历史事故的不可预测的积累?在这里,我们通过将某些为研究细胞代谢的基因组规模模型而开发的方法应用于人工化学宇宙中来搜索此类原理。特别是,我们使用基于代谢通量约束的模型详尽搜索可最佳执行一系列基本代谢功能的人工化学途径。尽管使用的模型简单,但我们发现随后的途径显示出令人惊讶的丰富特性集,包括自催化循环和分级模块的存在,普遍优选的代谢物和反应的出现以及途径长度的对数趋势为输入/输出分子大小的函数。这些属性中的某些可以通过分析得出,这是以前在密码学中使用的借用方法。此外,通过将生化网络映射到简化的碳原子反应主链上,我们发现与针对人工化学预测的性质相似的性质也适用于真实的代谢网络。这些发现表明,最佳化原理和算术简单性可能位于生物化学复杂性的某些方面。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号