首页> 美国卫生研究院文献>PLoS Biology >Full mutational mapping of titratable residues helps to identify proton-sensors involved in the control of channel gating in the Gloeobacter violaceus pentameric ligand-gated ion channel
【2h】

Full mutational mapping of titratable residues helps to identify proton-sensors involved in the control of channel gating in the Gloeobacter violaceus pentameric ligand-gated ion channel

机译:可滴定残基的完整突变图谱有助于鉴定质子传感器参与质子球菌五聚体配体门控离子通道的通道门控

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The Gloeobacter violaceus ligand-gated ion channel (GLIC) has been extensively studied by X-ray crystallography and other biophysical techniques. This provided key insights into the general gating mechanism of pentameric ligand-gated ion channel (pLGIC) signal transduction. However, the GLIC is activated by lowering the pH and the location of its putative proton activation site(s) still remain(s) unknown. To this end, every Asp, Glu, and His residue was mutated individually or in combination and investigated by electrophysiology. In addition to the mutational analysis, key mutations were structurally resolved to address whether particular residues contribute to proton sensing, or alternatively to GLIC-gating, independently of the side chain protonation. The data show that multiple residues located below the orthosteric site, notably E26, D32, E35, and D122 in the lower part of the extracellular domain (ECD), along with E222, H235, E243, and H277 in the transmembrane domain (TMD), alter GLIC activation. D122 and H235 were found to also alter GLIC expression. E35 is identified as a key proton-sensing residue, whereby neutralization of its side chain carboxylate stabilizes the active state. Thus, proton activation occurs allosterically to the orthosteric site, at the level of multiple loci with a key contribution of the coupling interface between the ECD and TMD.
机译:紫球菌配体门离子通道(GLIC)已通过X射线晶体学和其他生物物理技术进行了广泛研究。这为五聚体配体门控离子通道(pLGIC)信号转导的一般门控机制提供了重要见识。然而,通过降低pH来活化GLIC,并且其推定的质子活化位点的位置仍然未知。为此,将每个Asp,Glu和His残基单独或组合突变,并通过电生理进行研究。除了突变分析外,还对关键突变进行了结构解析,以解决特定残基是否对质子传感或对GLIC门控的贡献,而与侧链质子化无关。数据显示,位于正构位点下方的多个残基,尤其是位于细胞外域(ECD)下部的E26,D32,E35和D122,以及跨膜域(TMD)的E222,H235,E243和H277 ,更改GLIC激活。发现D122和H235也改变GLIC表达。 E35被鉴定为关键的质子感应残基,由此中和其侧链羧酸盐可稳定活性状态。因此,质子活化对正构位点是变构发生,位于多个基因座的水平,ECD和TMD之间的偶联界面起关键作用。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号