首页> 美国卫生研究院文献>eNeuro >Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium L-Type Calcium and Shaker Potassium Channels
【2h】

Postnatal Increases in Axonal Conduction Velocity of an Identified Drosophila Interneuron Require Fast Sodium L-Type Calcium and Shaker Potassium Channels

机译:产后已确定的果蝇中神经轴突传导速度的增加需要快速的钠L型钙和摇床钾通道。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

During early postnatal life, speed up of signal propagation through many central and peripheral neurons has been associated with an increase in axon diameter or/and myelination. Especially in unmyelinated axons postnatal adjustments of axonal membrane conductances is potentially a third mechanism but solid evidence is lacking. Here, we show that axonal action potential (AP) conduction velocity in the Drosophila giant fiber (GF) interneuron, which is required for fast long-distance signal conduction through the escape circuit, is increased by 80% during the first day of adult life. Genetic manipulations indicate that this postnatal increase in AP conduction velocity in the unmyelinated GF axon is likely owed to adjustments of ion channel expression or properties rather than axon diameter increases. Specifically, targeted RNAi knock-down of either Para fast voltage-gated sodium, Shaker potassium (Kv1 homologue), or surprisingly, L-type like calcium channels counteracts postnatal increases in GF axonal conduction velocity. By contrast, the calcium-dependent potassium channel Slowpoke (BK) is not essential for postnatal speeding, although it also significantly increases conduction velocity. Therefore, we identified multiple ion channels that function to support fast axonal AP conduction velocity, but only a subset of these are regulated during early postnatal life to maximize conduction velocity. Despite its large diameter (∼7 µm) and postnatal regulation of multiple ionic conductances, mature GF axonal conduction velocity is still 20–60 times slower than that of vertebrate Aβ sensory axons and α motoneurons, thus unraveling the limits of long-range information transfer speed through invertebrate circuits.
机译:在产后早期,通过许多中枢和周围神经元的信号传播加快与轴突直径或/和髓鞘形成增加有关。尤其是在无髓轴突的产后,轴突膜电导的调节可能是第三个机制,但缺乏确凿的证据。在这里,我们显示,在成年后的第一天,果蝇巨型纤维(GF)中神经元中的轴突动作电位(AP)传导速度是通过逃逸电路快速进行长距离信号传导所必需的,其传导速度增加了80% 。遗传操作表明,这种未出生的GF轴突中AP传导速度的这种出生后增加可能是由于离子通道表达或特性的调节,而不是轴突直径的增加。具体而言,Para快速电压门控钠盐,摇床钾盐(Kv1同源物)或令人惊讶的L型钙通道的靶向RNAi抑制作用抵消了出生后GF轴突传导速度的增加。相比之下,钙依赖性钾离子通道慢速波(BK)对于产后超速并不是必不可少的,尽管它也显着提高了传导速度。因此,我们确定了多个离子通道,这些通道可支持快速的轴突AP传导速度,但在出生后早期仅调节其中的一部分,以最大化传导速度。尽管其直径大(约7 µm)并且在出生后可以调节多种离子电导率,但成熟的GF轴突传导速度仍比脊椎动物Aβ感觉轴突和α运动神经元慢20至60倍,从而消除了远程信息传输的局限性通过无脊椎动物电路的速度。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号