首页> 美国卫生研究院文献>Frontiers in Bioengineering and Biotechnology >Connecting Mechanics and Bone Cell Activities in the Bone Remodeling Process: An Integrated Finite Element Modeling
【2h】

Connecting Mechanics and Bone Cell Activities in the Bone Remodeling Process: An Integrated Finite Element Modeling

机译:在骨骼重塑过程中连接力学和骨骼细胞活动:集成有限元建模

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Bone adaptation occurs as a response to external loadings and involves bone resorption by osteoclasts followed by the formation of new bone by osteoblasts. It is directly triggered by the transduction phase by osteocytes embedded within the bone matrix. The bone remodeling process is governed by the interactions between osteoblasts and osteoclasts through the expression of several autocrine and paracrine factors that control bone cell populations and their relative rate of differentiation and proliferation. A review of the literature shows that despite the progress in bone remodeling simulation using the finite element (FE) method, there is still a lack of predictive models that explicitly consider the interaction between osteoblasts and osteoclasts combined with the mechanical response of bone. The current study attempts to develop an FE model to describe the bone remodeling process, taking into consideration the activities of osteoclasts and osteoblasts. The mechanical behavior of bone is described by taking into account the bone material fatigue damage accumulation and mineralization. A coupled strain–damage stimulus function is proposed, which controls the level of autocrine and paracrine factors. The cellular behavior is based on Komarova et al.’s () dynamic law, which describes the autocrine and paracrine interactions between osteoblasts and osteoclasts and computes cell population dynamics and changes in bone mass at a discrete site of bone remodeling. Therefore, when an external mechanical stress is applied, bone formation and resorption is governed by cells dynamic rather than adaptive elasticity approaches. The proposed FE model has been implemented in the FE code Abaqus (UMAT routine). An example of human proximal femur is investigated using the model developed. The model was able to predict final human proximal femur adaptation similar to the patterns observed in a human proximal femur. The results obtained reveal complex spatio-temporal bone adaptation. The proposed FEM model gives insight into how bone cells adapt their architecture to the mechanical and biological environment.
机译:骨骼适应是对外部负荷的反应,包括破骨细胞对骨的吸收,然后由成骨细胞形成新的骨骼。它由嵌入骨基质中的骨细胞的转导阶段直接触发。骨重塑过程由成骨细胞和破骨细胞之间的相互作用控制,这些相互作用通过控制骨细胞种群及其相对分化和增殖速率的几种自分泌和旁分泌因子的表达来实现。文献综述表明,尽管在使用有限元(FE)方法进行骨骼重塑模拟方面取得了进展,但仍然缺乏能够明确考虑成骨细胞和破骨细胞之间相互作用以及骨骼机械反应的预测模型。当前的研究试图开发一个描述骨骼重塑过程的有限元模型,同时考虑破骨细胞和成骨细胞的活性。通过考虑骨骼材料的疲劳损伤累积和矿化来描述骨骼的机械行为。提出了耦合的应变-损伤刺激功能,该功能控制自分泌和旁分泌因子的水平。细胞行为基于Komarova等人的动态定律,该定律描述了成骨细胞和破骨细胞之间的自分泌和旁分泌相互作用,并计算了细胞重建动态和骨骼重塑离散部位的骨量变化。因此,当施加外部机械应力时,骨骼的形成和吸收由细胞动力学而非适应性弹性方法控制。拟议的有限元模型已在有限元代码Abaqus(UMAT例程)中实现。使用开发的模型研究了人类股骨近端的一个例子。该模型能够预测最终的人类近端股骨适应性,类似于在人类近端股骨中观察到的模式。获得的结果揭示了复杂的时空骨骼适应性。拟议的有限元模型可以深入了解骨细胞如何使其结构适应机械和生物环境。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号