首页> 美国卫生研究院文献>Frontiers in Bioengineering and Biotechnology >Finite Element Modeling of CNS White Matter Kinematics: Use of a 3D RVE to Determine Material Properties
【2h】

Finite Element Modeling of CNS White Matter Kinematics: Use of a 3D RVE to Determine Material Properties

机译:CNS白色物质运动学的有限元建模:使用3D RVE确定材料属性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Axonal injury represents a critical target area for the prevention and treatment of traumatic brain and spinal cord injuries. Finite element (FE) models of the head and/or brain are often used to predict brain injury caused by external mechanical loadings, such as explosive waves and direct impact. The accuracy of these numerical models depends on correctly determining the material properties and on the precise depiction of the tissues’ microstructure (microscopic level). Moreover, since the axonal microstructure for specific regions of the brain white matter is locally oriented, the stress, and strain fields are highly anisotropic and axon orientation dependent. Additionally, mechanical strain has been identified as the proximal cause of axonal injury, which further demonstrates the importance of this multi-scale relationship. In this study, our previously developed FE and kinematic axonal models are coupled and applied to a pseudo 3-dimensional representative volume element of central nervous system white matter to investigate the multi-scale mechanical behavior. An inverse FE procedure was developed to identify material parameters of spinal cord white matter by combining the results of uniaxial testing with FE modeling. A satisfactory balance between simulation and experiment was achieved via optimization by minimizing the squared error between the simulated and experimental force-stretch curve. The combination of experimental testing and FE analysis provides a useful analysis tool for soft biological tissues in general, and specifically enables evaluations of the axonal response to tissue-level loading and subsequent predictions of axonal damage.
机译:轴突损伤是预防和治疗颅脑和脊髓损伤的关键目标区域。头部和/或大脑的有限元(FE)模型通常用于预测由外部机械负载(例如爆炸波和直接撞击)引起的脑部损伤。这些数值模型的准确性取决于正确确定材料的特性以及组织微观结构(微观水平)的精确描绘。而且,由于脑白质特定区域的轴突微结构是局部取向的,因此应力和应变场是高度各向异性的,并且依赖于轴突取向。此外,机械应变已被确定为轴突损伤的近端原因,这进一步证明了这种多尺度关系的重要性。在这项研究中,我们先前开发的有限元和运动轴突模型被耦合并应用于中枢神经系统白质的伪3维代表体积元素,以研究多尺度力学行为。通过将单轴测试结果与有限元建模相结合,开发了逆有限元程序来识别脊髓白质的材料参数。通过最小化模拟和实验力-拉伸曲线之间的平方误差,通过优化达到了模拟和实验之间令人满意的平衡。一般而言,将实验测试与有限元分析相结合,可为软生物组织提供有用的分析工具,并且特别能够评估对轴突对组织水平负荷的反应以及对轴突损伤的后续预测。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号