首页> 美国卫生研究院文献>Frontiers in Chemistry >Designing Superoxide-Generating Quantum Dots for Selective Light-Activated Nanotherapy
【2h】

Designing Superoxide-Generating Quantum Dots for Selective Light-Activated Nanotherapy

机译:设计用于选择性光激活纳米疗法的产生超氧化物的量子点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The rapid emergence of superbugs, or multi-drug resistant (MDR) organisms, has prompted a search for novel antibiotics, beyond traditional small-molecule therapies. Nanotherapeutics are being investigated as alternatives, and recently superoxide-generating quantum dots (QDs) have been shown as important candidates for selective light-activated therapy, while also potentiating existing antibiotics against MDR superbugs. Their therapeutic action is selective, can be tailored by simply changing their quantum-confined conduction-valence band (CB-VB) positions and alignment with different redox half-reactions—and hence their ability to generate specific radical species in biological media. Here, we show the design of superoxide-generating QDs using optimal QD material and size well-matched to superoxide redox potential, charged ligands to modulate their uptake in cells and selective redox interventions, and core/shell structures to improve their stability for therapeutic action. We show that cadmium telluride (CdTe) QDs with conduction band (CB) position at −0.5 V with respect to Normal Hydrogen Electron (NHE) and visible 2.4 eV bandgap generate a large flux of selective superoxide radicals, thereby demonstrating the effective light-activated therapy. Although the positively charged QDs demonstrate large cellular uptake, they bind indiscriminately to cell surfaces and cause non-selective cell death, while negatively charged and zwitterionic QD ligands reduce the uptake and allow selective therapeutic action via interaction with redox species. The stability of designed QDs in biologically-relevant media increases with the formation of core-shell QD structures, but an appropriate design of core-shell structures is needed to minimize any reduction in charge injection efficiency to adsorbed oxygen molecules (to form superoxide) and maintain similar quantitative generation of tailored redox species, as measured using electron paramagnetic resonance (EPR) spectroscopy and electrochemical impedance spectroscopy (EIS). Using these findings, we demonstrate the rational design of QDs as selective therapeutic to kill more than 99% of a priority class I pathogen, thus providing an effective therapy against MDR superbugs.
机译:超级细菌或多药耐药性(MDR)生物的迅速出现,促使人们寻求除传统的小分子疗法之外的新型抗生素。纳米疗法正在被研究作为替代品,最近已证明产生超氧化物的量子点(QDs)是选择性光活化疗法的重要候选者,同时也可以增强现有的抗MDR超级细菌的抗生素。它们的治疗作用是选择性的,可以通过简单地改变其量子限制的导价带(CB-VB)位置并与不同的氧化还原半反应对齐来进行定制,从而可以在生物介质中生成特定的自由基物种。在这里,我们展示了使用最佳QD材料设计的产生超氧化物的QD,其尺寸与超氧化物氧化还原电势完全匹配,带电荷的配体可调节其在细胞中的摄取和选择性氧化还原干预,以及核/壳结构以提高其稳定性,从而发挥治疗作用。我们表明,相对于正常氢电子(NHE)和可见的2.4 eV带隙,导带(CB)位置在-0.5 V的碲化镉(CdTe)QD产生大量的选择性超氧自由基通量,从而证明了有效的光激活治疗。尽管带正电荷的QDs表现出大量的细胞摄取,但它们不加区别地与细胞表面结合并导致非选择性细胞死亡,而带负电荷的两性离子QD配体会减少摄取并通过与氧化还原物质相互作用而具有选择性治疗作用。设计的量子点在生物相关介质中的稳定性会随着核-壳量子点结构的形成而增加,但是需要适当设计核-壳结构,以最大程度地减少对吸附的氧分子(形成超氧化物)的电荷注入效率的降低。使用电子顺磁共振(EPR)光谱和电化学阻抗光谱(EIS)进行测量,可保持定制氧化还原物质的相似定量生成。利用这些发现,我们证明了QDs的合理设计,它可以杀死99%以上的优先I类病原体,从而提供了针对MDR超级病菌的有效疗法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号