首页> 美国卫生研究院文献>Frontiers in Chemistry >Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes
【2h】

Theoretical analysis of hydrogen spillover mechanism on carbon nanotubes

机译:碳纳米管上氢溢出机理的理论分析

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The spillover mechanism of molecular hydrogen on carbon nanotubes in the presence of catalytically active platinum clusters was critically and systematically investigated by using density-functional theory. Our simulation model includes a Pt4 cluster for the catalyst nanoparticle and curved and planar circumcoronene for two exemplary single-walled carbon nanotubes (CNT), the (10,10) CNT and one of large diameter, respectively. Our results show that the H2 molecule dissociates spontaneously on the Pt4 cluster. However, the dissociated H atoms have to overcome a barrier of more than 2 eV to migrate from the catalyst to the CNT, even if the Pt4 cluster is at full saturation with six adsorbed and dissociated hydrogen molecules. Previous investigations have shown that the mobility of hydrogen atoms on the CNT surface is hindered by a barrier. We find that instead the Pt4 catalyst may move along the outer surface of the CNT with activation energy of only 0.16 eV, and that this effect offers the possibility of full hydrogenation of the CNT. Thus, although we have not found a low-energy pathway to spillover onto the CNT, we suggest, based on our calculations and calculated data reported in the literature, that in the hydrogen-spillover process the observed saturation of the CNT at hydrogen background pressure occurs through mobile Pt nanoclusters, which move on the substrate more easily than the substrate-chemisorbed hydrogens, and deposit or reattach hydrogens in the process. Initial hydrogenation of the carbon substrate, however, is thermodynamically unfavoured, suggesting that defects should play a significant role.
机译:利用密度泛函理论,系统地研究了在催化活性铂簇存在下分子氢在碳纳米管上的溢出机理。我们的模拟模型包括用于催化剂纳米粒子的Pt4簇以及用于两个示例性单壁碳纳米管(CNT),分别为(10,10)CNT和大直径碳纳米管的弯曲和平面环戊烯。我们的结果表明,H2分子在Pt4簇上自发解离。但是,即使Pt4簇被六个吸附和解离的氢分子完全饱和,解离的H原子也必须克服超过2 eV的势垒才能从催化剂迁移到CNT。先前的研究表明,碳氢原子在CNT表面的迁移受到屏障的阻碍。我们发现,Pt4催化剂可能仅以0.16 eV的活化能沿CNT的外表面移动,这种作用提供了CNT完全氢化的可能性。因此,尽管我们尚未发现溢出到碳纳米管上的低能量途径,但我们建议根据我们的计算和文献报道的计算数据,在氢溢出过程中,在氢本底压力下观察到的碳纳米管饱和通过可移动的Pt纳米簇发生,该簇比在基质上化学吸附的氢更容易在基质上移动,并在此过程中沉积或重新附着氢。然而,碳基质的初始氢化在热力学上是不利的,这表明缺陷应该起重要作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号