首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Information-Based Principle Induces Small-World Topology and Self-Organized Criticality in a Large Scale Brain Network
【2h】

Information-Based Principle Induces Small-World Topology and Self-Organized Criticality in a Large Scale Brain Network

机译:基于信息的原理在大规模脑网络中引发小世界拓扑和自组织临界

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The information processing in the large scale network of the human brain is related to its cognitive functions. Due to requirements for adaptation to changing environments under biological constraints, these processes in the brain can be hypothesized to be optimized. The principles based on the information optimization are expected to play a central role in affecting the dynamics and topological structure of the brain network. Recent studies on the functional connectivity between brain regions, referred to as the functional connectome, reveal characteristics of their networks, such as self-organized criticality of brain dynamics and small-world topology. However, these important attributes are established separately, and their relations to the principle of the information optimization are unclear. Here, we show that the maximization principle of the mutual information entropy induces the optimal state, at which the small-world network topology and the criticality in the activation dynamics emerge. Our findings, based on the functional connectome analyses, show that according to the increasing mutual information entropy, the coactivation pattern converges to the state of self-organized criticality, and a phase transition of the network topology, which is responsible for the small-world topology, arises simultaneously at the same point. The coincidence of these phase transitions at the same critical point indicates that the criticality of the dynamics and the phase transition of the network topology are essentially rooted in the same phenomenon driven by the mutual information maximization. As a consequence, the two different attributes of the brain, self-organized criticality and small-world topology, can be understood within a unified perspective under the information-based principle. Thus, our study provides an insight into the mechanism underlying the information processing in the brain.
机译:人脑的大规模网络中的信息处理与其认知功能有关。由于需要在生物学限制下适应不断变化的环境,因此可以假设大脑中的这些过程可以进行优化。预计基于信息优化的原理将在影响大脑网络的动力学和拓扑结构方面发挥中心作用。关于大脑区域之间的功能连通性的最新研究(称为功能连接体)揭示了其网络的特征,例如大脑动力学和小世界拓扑结构的自组织临界性。但是,这些重要属性是分别建立的,它们与信息优化原理的关系尚不清楚。在这里,我们证明了互信息熵的最大化原理诱导了最佳状态,在该状态下,小世界网络拓扑和激活动力学的临界性出现了。基于功能连接组分析,我们的发现表明,根据相互信息熵的增加,共激活模式收敛到自组织临界状态,并且网络拓扑结构发生相变,这是小世界的原因。拓扑在同一点同时出现。这些相变在同一临界点上的重合表明,动力学的临界性和网络拓扑的相变本质上是基于互信息最大化所驱动的同一现象。结果,在基于信息的原理下,可以在统一的视角下理解大脑的两个不同属性,即自组织的临界度和小世界拓扑。因此,我们的研究提供了对大脑信息处理基础机制的见解。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号