首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Opposing Effects of Intrinsic Conductance and Correlated Synaptic Input on Vm-Fluctuations during Network Activity
【2h】

Opposing Effects of Intrinsic Conductance and Correlated Synaptic Input on Vm-Fluctuations during Network Activity

机译:网络活动期间内在电导和相关突触输入对Vm波动的相反影响

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neurons often receive massive concurrent bombardment of synaptic inhibition and excitation during functional network activity. This increases membrane conductance and causes fluctuations in membrane potential (Vm) and spike timing. The conductance increase is commonly attributed to synaptic conductance, but also includes the intrinsic conductances recruited during network activity. These two sources of conductance have contrasting dynamic properties at sub-threshold membrane potentials. Synaptic transmitter gated conductance changes abruptly and briefly with each presynaptic action potential. If the spikes arrive at random times the changes in synaptic conductance are therefore stochastic and rapid during intense network activity. In comparison, sub-threshold intrinsic conductances vary smoothly in time. In the present study this discrepancy is investigated using two conductance-based models: a (1) compartment model and a (2) compartment with realistic slow intrinsic conductances. We examine the effects of varying the relative contributions of non-fluctuating intrinsic conductance with fluctuating concurrent inhibitory and excitatory synaptic conductance. For given levels of correlation in the synaptic input we find that the magnitude of the membrane fluctuations uniquely determines the relative contribution of synaptic and intrinsic conductance. We also quantify how Vm-fluctuations vary with synaptic correlations for fixed ratios of synaptic and intrinsic conductance. Interestingly, the levels of Vm -fluctuations and conductance observed experimentally during functional network activity leave little room for intrinsic conductance to contribute. Even without intrinsic conductances the variance in Vm -fluctuations can only be explained by a high degree of correlated firing among presynaptic neurons.
机译:在功能性网络活动期间,神经元经常受到突触抑制和兴奋的大量同时轰击。这会增加膜电导,并导致膜电势(Vm)和尖峰时间的波动。电导的增加通常归因于突触电导,但也包括网络活动期间募集的内在电导。这两个电导源在亚阈值膜电势下具有相反的动态特性。突触递质的门控电导随突触前动作电位的变化而短暂而短暂地变化。如果峰值在随机时间到达,则在激烈的网络活动中突触电导的变化是随机且迅速的。相比之下,亚阈值内在电导在时间上变化平稳。在本研究中,使用两种基于电导的模型研究了这种差异:(1)隔室模型和(2)具有现实的慢内在电导的隔室。我们研究了随波动的同时抑制和兴奋性突触电导而变化的非波动固有电导的相对贡献的影响。对于给定的突触输入相关性水平,我们发现膜波动的大小唯一确定了突触和固有电导的相对贡献。对于突触和内在电导的固定比率,我们还量化了Vm波动如何随突触相关性变化。有趣的是,在功能网络活动期间通过实验观察到的Vm涨落和电导水平几乎没有留下供固有电导贡献的空间。即使没有内在电导,Vm波动的变化也只能由突触前神经元之间高度相关的放电来解释。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号