首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Distributed organization of a brain microcircuit analyzed by three-dimensional modeling: the olfactory bulb
【2h】

Distributed organization of a brain microcircuit analyzed by three-dimensional modeling: the olfactory bulb

机译:三维建模分析的大脑微电路的分布式组织:嗅球

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The functional consequences of the laminar organization observed in cortical systems cannot be easily studied using standard experimental techniques, abstract theoretical representations, or dimensionally reduced models built from scratch. To solve this problem we have developed a full implementation of an olfactory bulb microcircuit using realistic three-dimensional (3D) inputs, cell morphologies, and network connectivity. The results provide new insights into the relations between the functional properties of individual cells and the networks in which they are embedded. To our knowledge, this is the first model of the mitral-granule cell network to include a realistic representation of the experimentally-recorded complex spatial patterns elicited in the glomerular layer (GL) by natural odor stimulation. Although the olfactory bulb, due to its organization, has unique advantages with respect to other brain systems, the method is completely general, and can be integrated with more general approaches to other systems. The model makes experimentally testable predictions on distributed processing and on the differential backpropagation of somatic action potentials in each lateral dendrite following odor learning, providing a powerful 3D framework for investigating the functions of brain microcircuits.
机译:在皮层系统中观察到的层状组织的功能后果无法使用标准的实验技术,抽象的理论表示或从头开始构建的尺寸缩小的模型轻松研究。为了解决这个问题,我们已经开发出了使用现实的三维(3D)输入,细胞形态和网络连接性的嗅球微电路的完整实现。结果为单个细胞的功能特性与嵌入它们的网络之间的关系提供了新的见解。据我们所知,这是二尖瓣颗粒细胞网络的第一个模型,它包括真实记录的自然气味刺激在肾小球层(GL)中引起的实验记录的复杂空间模式。尽管嗅球由于其组织结构而相对于其他脑系统具有独特的优势,但是该方法是完全通用的,并且可以与其他系统的更通用方法集成在一起。该模型在进行气味学习后,对分布式处理以及每个侧向枝晶中体细胞动作电位的差异反向传播进行了实验可测试的预测,从而为研究大脑微电路的功能提供了强大的3D框架。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号