首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Sensory Feedback Error Correction and Remapping in a Multiple Oscillator Model of Place-Cell Activity
【2h】

Sensory Feedback Error Correction and Remapping in a Multiple Oscillator Model of Place-Cell Activity

机译:位置细胞活动的多振荡器模型中的感官反馈错误校正和重新映射

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Mammals navigate by integrating self-motion signals (“path integration”) and occasionally fixing on familiar environmental landmarks. The rat hippocampus is a model system of spatial representation in which place cells are thought to integrate both sensory and spatial information from entorhinal cortex. The localized firing fields of hippocampal place cells and entorhinal grid-cells demonstrate a phase relationship with the local theta (6–10 Hz) rhythm that may be a temporal signature of path integration. However, encoding self-motion in the phase of theta oscillations requires high temporal precision and is susceptible to idiothetic noise, neuronal variability, and a changing environment. We present a model based on oscillatory interference theory, previously studied in the context of grid cells, in which transient temporal synchronization among a pool of path-integrating theta oscillators produces hippocampal-like place fields. We hypothesize that a spatiotemporally extended sensory interaction with external cues modulates feedback to the theta oscillators. We implement a form of this cue-driven feedback and show that it can retrieve fixed points in the phase code of position. A single cue can smoothly reset oscillator phases to correct for both systematic errors and continuous noise in path integration. Further, simulations in which local and global cues are rotated against each other reveal a phase-code mechanism in which conflicting cue arrangements can reproduce experimentally observed distributions of “partial remapping” responses. This abstract model demonstrates that phase-code feedback can provide stability to the temporal coding of position during navigation and may contribute to the context-dependence of hippocampal spatial representations. While the anatomical substrates of these processes have not been fully characterized, our findings suggest several signatures that can be evaluated in future experiments.
机译:哺乳动物通过整合自我运动信号(“路径整合”)并偶尔固定在熟悉的环境地标上来进行导航。大鼠海马体是一种空间表示的模型系统,其中位置细胞被认为整合了来自内嗅皮层的感觉和空间信息。海马体细胞和内嗅网格细胞的局部放电场显示出与局部θ(6-10Hz)节律的相位关系,这可能是路径整合的时间特征。但是,在theta振荡阶段编码自运动需要较高的时间精度,并且容易受到白噪声,神经元变异性和环境变化的影响。我们提出了一种基于振荡干扰理论的模型,该模型先前是在网格单元中进行研究的,其中路径积分theta振荡器池之间的瞬态时间同步会产生海马样的位置场。我们假设与外部提示的时空扩展感官互动调制反馈到theta振荡器。我们实现了这种由提示驱动的反馈的形式,并表明它可以在位置的相位代码中检索固定点。单个提示可以平滑地重置振荡器相位,以校正系统集成中的系统误差和连续噪声。此外,局部和全局提示彼此相对旋转的模拟揭示了一种相位编码机制,其中冲突的提示排列可以重现实验观察到的“部分重新映射”响应的分布。此抽象模型表明,相位代码反馈可以为导航过程中位置的时间编码提供稳定性,并可能有助于海马空间表示的上下文相关性。虽然这些过程的解剖基质尚未得到充分表征,但我们的发现表明可以在未来的实验中评估的几个特征。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号