首页> 美国卫生研究院文献>Frontiers in Computational Neuroscience >Information Diversity in Structure and Dynamics of Simulated Neuronal Networks
【2h】

Information Diversity in Structure and Dynamics of Simulated Neuronal Networks

机译:模拟神经元网络的结构和动力学中的信息多样性

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neuronal networks exhibit a wide diversity of structures, which contributes to the diversity of the dynamics therein. The presented work applies an information theoretic framework to simultaneously analyze structure and dynamics in neuronal networks. Information diversity within the structure and dynamics of a neuronal network is studied using the normalized compression distance. To describe the structure, a scheme for generating distance-dependent networks with identical in-degree distribution but variable strength of dependence on distance is presented. The resulting network structure classes possess differing path length and clustering coefficient distributions. In parallel, comparable realistic neuronal networks are generated with NETMORPH simulator and similar analysis is done on them. To describe the dynamics, network spike trains are simulated using different network structures and their bursting behaviors are analyzed. For the simulation of the network activity the Izhikevich model of spiking neurons is used together with the Tsodyks model of dynamical synapses. We show that the structure of the simulated neuronal networks affects the spontaneous bursting activity when measured with bursting frequency and a set of intraburst measures: the more locally connected networks produce more and longer bursts than the more random networks. The information diversity of the structure of a network is greatest in the most locally connected networks, smallest in random networks, and somewhere in between in the networks between order and disorder. As for the dynamics, the most locally connected networks and some of the in-between networks produce the most complex intraburst spike trains. The same result also holds for sparser of the two considered network densities in the case of full spike trains.
机译:神经网络表现出广泛的结构多样性,这有助于其中的动力学多样性。提出的工作应用信息理论框架来同时分析神经元网络中的结构和动力学。使用归一化的压缩距离研究神经元网络的结构和动力学中的信息多样性。为了描述该结构,提出了一种用于生成距离相关网络的方案,该网络具有相同的度内分布,但是强度对距离的依赖性可变。所得的网络结构类具有不同的路径长度和聚类系数分布。同时,使用NETMORPH模拟器生成可比较的逼真的神经元网络,并对它们进行类似的分析。为了描述动力学,使用不同的网络结构模拟网络峰值序列,并分析其突发行为。为了模拟网络活动,将尖峰神经元的Izhikevich模型与动态突触的Tsodyks模型一起使用。我们显示,当用爆发频率和一组爆发内测量来测量时,模拟的神经元网络的结构会影响自发爆发活动:与更随机的网络相比,连接越多的网络产生的爆发越长。网络结构的信息多样性在最本地连接的网络中最大,在随机网络中最小,并且在有序和无序之间的网络中的某个位置。至于动力学,最本地连接的网络和某些中间网络会生成最复杂的突发内尖峰序列。在全峰值列车的情况下,两个考虑的网络密度的稀疏性也具有相同的结果。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号