首页> 美国卫生研究院文献>Frontiers in Genetics >A Hierarchical Bayesian Approach to Multi-Trait Clinical Quantitative Trait Locus Modeling
【2h】

A Hierarchical Bayesian Approach to Multi-Trait Clinical Quantitative Trait Locus Modeling

机译:多特征临床定量性状基因座建模的多层贝叶斯方法

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Recent advances in high-throughput genotyping and transcript profiling technologies have enabled the inexpensive production of genome-wide dense marker maps in tandem with huge amounts of expression profiles. These large-scale data encompass valuable information about the genetic architecture of important phenotypic traits. Comprehensive models that combine molecular markers and gene transcript levels are increasingly advocated as an effective approach to dissecting the genetic architecture of complex phenotypic traits. The simultaneous utilization of marker and gene expression data to explain the variation in clinical quantitative trait, known as clinical quantitative trait locus (cQTL) mapping, poses challenges that are both conceptual and computational. Nonetheless, the hierarchical Bayesian (HB) modeling approach, in combination with modern computational tools such as Markov chain Monte Carlo (MCMC) simulation techniques, provides much versatility for cQTL analysis. Sillanpää and Noykova () developed a HB model for single-trait cQTL analysis in inbred line cross-data using molecular markers, gene expressions, and marker-gene expression pairs. However, clinical traits generally relate to one another through environmental correlations and/or pleiotropy. A multi-trait approach can improve on the power to detect genetic effects and on their estimation precision. A multi-trait model also provides a framework for examining a number of biologically interesting hypotheses. In this paper we extend the HB cQTL model for inbred line crosses proposed by Sillanpää and Noykova to a multi-trait setting. We illustrate the implementation of our new model with simulated data, and evaluate the multi-trait model performance with regard to its single-trait counterpart. The data simulation process was based on the multi-trait cQTL model, assuming three traits with uncorrelated and correlated cQTL residuals, with the simulated data under uncorrelated cQTL residuals serving as our test set for comparing the performances of the multi-trait and single-trait models. The simulated data under correlated cQTL residuals were essentially used to assess how well our new model can estimate the cQTL residual covariance structure. The model fitting to the data was carried out by MCMC simulation through OpenBUGS. The multi-trait model outperformed its single-trait counterpart in identifying cQTLs, with a consistently lower false discovery rate. Moreover, the covariance matrix of cQTL residuals was typically estimated to an appreciable degree of precision under the multi-trait cQTL model, making our new model a promising approach to addressing a wide range of issues facing the analysis of correlated clinical traits.
机译:高通量基因分型和转录谱分析技术的最新进展已使廉价地生产具有大量表达谱的全基因组范围的密集标记图成为可能。这些大规模数据包含有关重要表型性状遗传结构的有价值信息。越来越多地提出将分子标记和基因转录水平结合在一起的综合模型,作为剖析复杂表型性状遗传结构的有效方法。同时利用标记物和基因表达数据来解释临床定量性状的变异(称为临床定量性状基因座(cQTL)作图)提出了概念上和计算上的挑战。尽管如此,分层贝叶斯(HB)建模方法与诸如马尔可夫链蒙特卡洛(MCMC)模拟技术之类的现代计算工具相结合,为cQTL分析提供了更多的通用性。 Sillanpää和Noykova()使用分子标记,基因表达和标记-基因表达对开发了用于自交系交叉数据中单性状cQTL分析的HB模型。然而,临床特征通常通过环境相关性和/或多效性彼此相关。多特征方法可以提高检测遗传效应的能力及其估计精度。多特征模型还提供了一个框架,用于检查许多生物学上有趣的假设。在本文中,我们将Sillanpää和Noykova提出的自交系杂交的HB cQTL模型扩展到多特征设置。我们用仿真数据说明了新模型的实现,并就其单性状对应物评估了多性状模型的性能。数据模拟过程基于多性状cQTL模型,假设三个性状具有不相关和相关的cQTL残差,在不相关性cQTL残差下的模拟数据用作我们的测试集,用于比较多性状和单性状的性能楷模。相关cQTL残差下的模拟数据主要用于评估我们的新模型对cQTL残差协方差结构的估计程度。通过OpenBUGS通过MCMC仿真对数据进行模型拟合。在识别cQTL方面,多特征模型优于其单特征模型,其错误发现率一直较低。此外,在多特征cQTL模型下,通常估计cQTL残差的协方差矩阵具有一定的精度,这使我们的新模型成为解决相关临床特征分析所面临的广泛问题的有前途的方法。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号