首页> 美国卫生研究院文献>Frontiers in Microbiology >Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins
【2h】

Enzymes involved in the anaerobic oxidation of n-alkanes: from methane to long-chain paraffins

机译:正烷烃厌氧氧化涉及的酶:从甲烷到长链烷烃

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Anaerobic microorganisms play key roles in the biogeochemical cycling of methane and non-methane alkanes. To date, there appear to be at least three proposed mechanisms of anaerobic methane oxidation (AOM). The first pathway is mediated by consortia of archaeal anaerobic methane oxidizers and sulfate-reducing bacteria (SRB) via “reverse methanogenesis” and is catalyzed by a homolog of methyl-coenzyme M reductase. The second pathway is also mediated by anaerobic methane oxidizers and SRB, wherein the archaeal members catalyze both methane oxidation and sulfate reduction and zero-valent sulfur is a key intermediate. The third AOM mechanism is a nitrite-dependent, “intra-aerobic” pathway described for the denitrifying bacterium, ‘Candidatus Methylomirabilis oxyfera.’ It is hypothesized that AOM proceeds via reduction of nitrite to nitric oxide, followed by the conversion of two nitric oxide molecules to dinitrogen and molecular oxygen. The latter can be used to functionalize the methane via a particulate methane monooxygenase. With respect to non-methane alkanes, there also appear to be novel mechanisms of activation. The most well-described pathway is the addition of non-methane alkanes across the double bond of fumarate to form alkyl-substituted succinates via the putative glycyl radical enzyme, alkylsuccinate synthase (also known as methylalkylsuccinate synthase). Other proposed mechanisms include anaerobic hydroxylation via ethylbenzene dehydrogenase-like enzymes and an “intra-aerobic” denitrification pathway similar to that described for ‘Methylomirabilis oxyfera.’
机译:厌氧微生物在甲烷和非甲烷烷烃的生物地球化学循环中起关键作用。迄今为止,似乎至少提出了三种厌氧甲烷氧化(AOM)机制。第一条途径是由古细菌厌氧甲烷氧化剂和硫酸盐还原菌(SRB)经由“逆甲烷生成”介导的,并由甲基辅酶M还原酶的同系物催化。第二种途径也由厌氧甲烷氧化剂和SRB介导,其中古细菌成员催化甲烷氧化和硫酸盐还原,而零价硫是关键中间体。第三个AOM机制是针对反硝化细菌'Candidatus Methylomirabilis oxyfera'的亚硝酸盐依赖性“需氧内”途径。假设AOM通过将亚硝酸盐还原为一氧化氮,然后转化为两个一氧化氮来进行。分子转化为二氮和分子氧。后者可用于通过颗粒甲烷单加氧酶使甲烷功能化。关于非甲烷烷烃,似乎还存在新颖的活化机理。最为人熟知的途径是通过富马酸酯的双键添加非甲烷烷烃,以通过公认的甘氨酰自由基酶烷基琥珀酸酯合酶(也称为甲基烷基琥珀酸酯合酶)形成烷基取代的琥珀酸酯。其他拟议的机制包括通过乙苯脱氢酶样酶的厌氧羟基化和类似于“氧化甲基甲烷”的“有氧”反硝化途径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号