首页> 美国卫生研究院文献>Frontiers in Microbiology >The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20
【2h】

The genetic basis of energy conservation in the sulfate-reducing bacterium Desulfovibrio alaskensis G20

机译:硫酸盐还原菌阿拉斯加脱硫弧菌G20节能的遗传基础

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sulfate-reducing bacteria play major roles in the global carbon and sulfur cycles, but it remains unclear how reducing sulfate yields energy. To determine the genetic basis of energy conservation, we measured the fitness of thousands of pooled mutants of Desulfovibrio alaskensis G20 during growth in 12 different combinations of electron donors and acceptors. We show that ion pumping by the ferredoxin:NADH oxidoreductase Rnf is required whenever substrate-level phosphorylation is not possible. The uncharacterized complex Hdr/flox-1 (Dde_1207:13) is sometimes important alongside Rnf and may perform an electron bifurcation to generate more reduced ferredoxin from NADH to allow further ion pumping. Similarly, during the oxidation of malate or fumarate, the electron-bifurcating transhydrogenase NfnAB-2 (Dde_1250:1) is important and may generate reduced ferredoxin to allow additional ion pumping by Rnf. During formate oxidation, the periplasmic [NiFeSe] hydrogenase HysAB is required, which suggests that hydrogen forms in the periplasm, diffuses to the cytoplasm, and is used to reduce ferredoxin, thus providing a substrate for Rnf. During hydrogen utilization, the transmembrane electron transport complex Tmc is important and may move electrons from the periplasm into the cytoplasmic sulfite reduction pathway. Finally, mutants of many other putative electron carriers have no clear phenotype, which suggests that they are not important under our growth conditions, although we cannot rule out genetic redundancy.
机译:减少硫酸盐的细菌在全球碳和硫循环中起着重要作用,但是还不清楚如何减少硫酸盐产生的能量。为了确定节能的遗传基础,我们测量了12种不同的电子供体和受体组合在生长过程中成千上万个合并的Desulfovibrio alaskensis G20突变体的适应性。我们表明,只要不可能进行底物水平的磷酸化,就需要通过铁氧还蛋白:NADH氧化还原酶Rnf进行离子泵送。未表征的复合物Hdr / flox-1(Dde_1207:13)有时与Rnf并列,可能会发生电子分叉,从而从NADH生成更多还原的铁氧还蛋白,从而允许进一步的离子泵送。类似地,在苹果酸或富马酸酯的氧化过程中,电子分叉的转氢酶NfnAB-2(Dde_1250:1)很重要,并且可能生成还原的铁氧还蛋白,从而允许Rnf额外泵送离子。在甲酸氧化过程中,需要周质[NiFeSe]氢化酶HysAB,这表明氢在周质中形成,扩散到细胞质,并用于还原铁氧还蛋白,从而为Rnf提供底物。在氢利用过程中,跨膜电子传输复合物Tmc很重要,并且可能会将电子从周质转移到胞质亚硫酸盐还原途径中。最后,许多其他推定的电子载体的突变体没有明确的表型,这表明它们在我们的生长条件下并不重要,尽管我们不能排除遗传冗余。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号