首页> 美国卫生研究院文献>Frontiers in Microbiology >CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough
【2h】

CO2 exposure at pressure impacts metabolism and stress responses in the model sulfate-reducing bacterium Desulfovibrio vulgaris strain Hildenborough

机译:在压力下暴露于二氧化碳会影响模型减少硫酸盐的细菌Desulfovibrio vulgaris菌株Hildenborough的代谢和应激反应

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Geologic carbon dioxide (CO2) sequestration drives physical and geochemical changes in deep subsurface environments that impact indigenous microbial activities. The combined effects of pressurized CO2 on a model sulfate-reducing microorganism, Desulfovibrio vulgaris, have been assessed using a suite of genomic and kinetic measurements. Novel high-pressure NMR time-series measurements using 13C-lactate were used to track D. vulgaris metabolism. We identified cessation of respiration at CO2 pressures of 10 bar, 25 bar, 50 bar, and 80 bar. Concurrent experiments using N2 as the pressurizing phase had no negative effect on microbial respiration, as inferred from reduction of sulfate to sulfide. Complementary pressurized batch incubations and fluorescence microscopy measurements supported NMR observations, and indicated that non-respiring cells were mostly viable at 50 bar CO2 for at least 4 h, and at 80 bar CO2 for 2 h. The fraction of dead cells increased rapidly after 4 h at 80 bar CO2. Transcriptomic (RNA-Seq) measurements on mRNA transcripts from CO2-incubated biomass indicated that cells up-regulated the production of certain amino acids (leucine, isoleucine) following CO2 exposure at elevated pressures, likely as part of a general stress response. Evidence for other poorly understood stress responses were also identified within RNA-Seq data, suggesting that while pressurized CO2 severely limits the growth and respiration of D. vulgaris cells, biomass retains intact cell membranes at pressures up to 80 bar CO2. Together, these data show that geologic sequestration of CO2 may have significant impacts on rates of sulfate reduction in many deep subsurface environments where this metabolism is a key respiratory process.
机译:地质二氧化碳(CO2)的封存驱动着深层地下环境中的物理和地球化学变化,从而影响了当地的微生物活动。已使用一组基因组和动力学测量方法评估了加压的CO2对减少硫酸盐的模型微生物Desulfovibrio vulgaris的综合作用。使用 13 C-乳酸盐的新型高压NMR时间序列测量被用于追踪寻常果蝇的代谢。我们确定在10 bar,25 bar,50 bar和80 bar的CO2压力下停止呼吸。从硫酸盐还原为硫化物推断,使用氮气作为加压相的并行实验对微生物呼吸没有负面影响。补充加压分批培养和荧光显微镜测量结果支持NMR观察,并表明非呼吸性细胞在50 bar CO2至少可存活至少4 h,在80 bar CO2至少可存活2 h。在80 bar CO2下4小时后,死细胞的比例迅速增加。对通过CO2孵育的生物质的mRNA转录本进行的转录组(RNA-Seq)测量表明,细胞在升高的CO2暴露后上调了某些氨基酸(亮氨酸,异亮氨酸)的产生,这可能是一般应激反应的一部分。在RNA-Seq数据中也发现了其他尚未充分理解的应激反应的证据,这表明虽然加压的CO2严重限制了寻常小球藻的生长和呼吸,但生物质在压力高达80 bar CO2的情况下仍能保留完整的细胞膜。这些数据加在一起表明,在许多新陈代谢是关键呼吸过程的深层地下环境中,二氧化碳的地质隔离可能会对硫酸盐的还原速率产生重大影响。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号