首页> 美国卫生研究院文献>Frontiers in Neural Circuits >Controlling the oscillation phase through precisely timed closed-loop optogenetic stimulation: a computational study
【2h】

Controlling the oscillation phase through precisely timed closed-loop optogenetic stimulation: a computational study

机译:通过精确定时的闭环光遗传学刺激控制振荡相位:计算研究

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dynamic oscillatory coherence is believed to play a central role in flexible communication between brain circuits. To test this communication-through-coherence hypothesis, experimental protocols that allow a reliable control of phase-relations between neuronal populations are needed. In this modeling study, we explore the potential of closed-loop optogenetic stimulation for the control of functional interactions mediated by oscillatory coherence. The theory of non-linear oscillators predicts that the efficacy of local stimulation will depend not only on the stimulation intensity but also on its timing relative to the ongoing oscillation in the target area. Induced phase-shifts are expected to be stronger when the stimulation is applied within specific narrow phase intervals. Conversely, stimulations with the same or even stronger intensity are less effective when timed randomly. Stimulation should thus be properly phased with respect to ongoing oscillations (in order to optimally perturb them) and the timing of the stimulation onset must be determined by a real-time phase analysis of simultaneously recorded local field potentials (LFPs). Here, we introduce an electrophysiologically calibrated model of Channelrhodopsin 2 (ChR2)-induced photocurrents, based on fits holding over two decades of light intensity. Through simulations of a neural population which undergoes coherent gamma oscillations—either spontaneously or as an effect of continuous optogenetic driving—we show that precisely-timed photostimulation pulses can be used to shift the phase of oscillation, even at transduction rates smaller than 25%. We consider then a canonic circuit with two inter-connected neural populations oscillating with gamma frequency in a phase-locked manner. We demonstrate that photostimulation pulses applied locally to a single population can induce, if precisely phased, a lasting reorganization of the phase-locking pattern and hence modify functional interactions between the two populations.
机译:动态振荡相干被认为在大脑回路之间的灵活交流中起着核心作用。为了测试这种通过相干沟通的假设,需要允许对神经元群体之间的相位关系进行可靠控制的实验协议。在此建模研究中,我们探索了闭环光遗传刺激在控制振荡相干介导的功能相互作用中的潜力。非线性振荡器的理论预测,局部刺激的功效不仅取决于刺激强度,还取决于相对于目标区域中正在进行的振荡的时间。当在特定的窄相位间隔内施加刺激时,预期诱导的相移会更强。相反,当随机计时时,强度相同甚至更强的刺激效果不佳。因此,应针对正在进行的振荡适当地调整刺激的相位(以最佳地扰动它们),并且必须通过同时记录的局部场电势(LFP)的实时相位分析来确定刺激开始的时间。在这里,我们介绍了基于视紫红质2(ChR2)诱导的光电流的电生理学校准模型,该模型基于保持超过20年的光强度。通过对自发地或由于连续光遗传学驱动而经历相干伽马振荡的神经种群进行仿真,我们表明,即使换能率小于25%,精确定时的光刺激脉冲也可用于改变振荡相位。然后,我们考虑一个具有两个相互连接的神经种群且以锁相方式振荡的伽马频率的经典电路。我们证明,局部施加到单个种群的光刺激脉冲可以诱导(如果精确地定相)锁相模式的持久重组,从而改变两个种群之间的功能相互作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号