首页> 美国卫生研究院文献>Frontiers in Molecular Neuroscience >Combinatorial In Silico Strategy towards Identifying Potential Hotspots during Inhibition of Structurally Identical HDAC1 and HDAC2 Enzymes for Effective Chemotherapy against Neurological Disorders
【2h】

Combinatorial In Silico Strategy towards Identifying Potential Hotspots during Inhibition of Structurally Identical HDAC1 and HDAC2 Enzymes for Effective Chemotherapy against Neurological Disorders

机译:组合式计算机模拟策略可在抑制结构相同的HDAC1和HDAC2酶抑制神经疾病的有效化学过程中识别潜在的热点

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Histone deacetylases (HDACs) regulate epigenetic gene expression programs by modulating chromatin architecture and are required for neuronal development. Dysregulation of HDACs and aberrant chromatin acetylation homeostasis have been implicated in various diseases ranging from cancer to neurodegenerative disorders. Histone deacetylase inhibitors (HDACi), the small molecules interfering HDACs have shown enhanced acetylation of the genome and are gaining great attention as potent drugs for treating cancer and neurodegeneration. HDAC2 overexpression has implications in decreasing dendrite spine density, synaptic plasticity and in triggering neurodegenerative signaling. Pharmacological intervention against HDAC2 though promising also targets neuroprotective HDAC1 due to high sequence identity (94%) with former in catalytic domain, culminating in debilitating off-target effects and creating hindrance in the defined intervention. This emphasizes the need of designing HDAC2-selective inhibitors to overcome these vicious effects and for escalating the therapeutic efficacy. Here we report a top-down combinatorial in silico approach for identifying the structural variants that are substantial for interactions against HDAC1 and HDAC2 enzymes. We used extra-precision (XP)-molecular docking, Molecular Mechanics Generalized Born Surface Area (MMGBSA) for predicting affinity of inhibitors against the HDAC1 and HDAC2 enzymes. Importantly, we employed a novel in silico strategy of coupling the state-of-the-art molecular dynamics simulation (MDS) to energetically-optimized structure based pharmacophores (e-Pharmacophores) method via MDS trajectory clustering for hypothesizing the e-Pharmacophore models. Further, we performed e-Pharmacophores based virtual screening against phase database containing millions of compounds. We validated the data by performing the molecular docking and MM-GBSA studies for the selected hits among the retrieved ones. Our studies attributed inhibitor potency to the ability of forming multiple interactions and infirm potency to least interactions. Moreover, our studies delineated that a single HDAC inhibitor portrays differential features against HDAC1 and HDAC2 enzymes. The high affinity and selective HDAC2 inhibitors retrieved through e-Pharmacophores based virtual screening will play a critical role in ameliorating neurodegenerative signaling without hampering the neuroprotective isoform (HDAC1).
机译:组蛋白脱乙酰基酶(HDAC)通过调节染色质结构来调节表观遗传基因表达程序,是神经元发育所必需的。 HDAC的失调和染色质乙酰化稳态的异常与多种疾病有关,从癌症到神经退行性疾病。干扰HDAC的小分子组蛋白脱乙酰基酶抑制剂(HDACi)已显示出增强的基因组乙酰化能力,作为治疗癌症和神经退行性疾病的有效药物受到了广泛关注。 HDAC2的过表达对降低树突棘密度,突触可塑性和触发神经退行性信号具有影响。针对HDAC2的药理学干预虽然很有希望,但由于与催化域中的前者具有较高的序列同一性(94%),因此也靶向神经保护性HDAC1,最终导致使脱靶效应衰弱,并在确定的干预措施中造成障碍。这强调了设计HDAC2选择性抑制剂的需要,以克服这些恶性作用并提高治疗效果。在这里,我们报告了一种自上而下的计算机模拟组合方法,用于鉴定对HDAC1和HDAC2酶相互作用至关重要的结构变异。我们使用了超精密(XP)分子对接,分子力学广义生表面积(MMGBSA)来预测抑制剂对HDAC1和HDAC2酶的亲和力。重要的是,我们采用了一种新颖的计算机模拟策略,通过MDS轨迹聚类将最新的分子动力学模拟(MDS)与能量优化的基于结构的药效团(e-Pharmacophores)方法结合起来,以假设e-Pharmacophore模型。此外,我们针对包含数百万种化合物的相数据库进行了基于e-Pharmacophores的虚拟筛选。我们通过对检索到的命中分子进行分子对接和MM-GBSA研究来验证数据。我们的研究将抑制剂的效力归因于形成多种相互作用的能力,而将效力减弱归因于最少的相互作用。此外,我们的研究表明,单个HDAC抑制剂具有针对HDAC1和HDAC2酶的不同特征。通过基于e-Pharmacophores的虚拟筛选获得的高亲和力和选择性HDAC2抑制剂将在改善神经变性信号转导而不损害神经保护同工型(HDAC1)方面发挥关键作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号