首页> 美国卫生研究院文献>Frontiers in Immunology >Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals
【2h】

Evolution of Innate Immunity: Clues from Invertebrates via Fish to Mammals

机译:先天免疫的进化:从无脊椎动物到鱼类的线索

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Host responses against invading pathogens are basic physiological reactions of all living organisms. Since the appearance of the first eukaryotic cells, a series of defense mechanisms have evolved in order to secure cellular integrity, homeostasis, and survival of the host. Invertebrates, ranging from protozoans to metazoans, possess cellular receptors, which bind to foreign elements and differentiate self from non-self. This ability is in multicellular animals associated with presence of phagocytes, bearing different names (amebocytes, hemocytes, coelomocytes) in various groups including animal sponges, worms, cnidarians, mollusks, crustaceans, chelicerates, insects, and echinoderms (sea stars and urchins). Basically, these cells have a macrophage-like appearance and function and the repair and/or fight functions associated with these cells are prominent even at the earliest evolutionary stage. The cells possess pathogen recognition receptors recognizing pathogen-associated molecular patterns, which are well-conserved molecular structures expressed by various pathogens (virus, bacteria, fungi, protozoans, helminths). Scavenger receptors, Toll-like receptors, and Nod-like receptors (NLRs) are prominent representatives within this group of host receptors. Following receptor–ligand binding, signal transduction initiates a complex cascade of cellular reactions, which lead to production of one or more of a wide array of effector molecules. Cytokines take part in this orchestration of responses even in lower invertebrates, which eventually may result in elimination or inactivation of the intruder. Important innate effector molecules are oxygen and nitrogen species, antimicrobial peptides, lectins, fibrinogen-related peptides, leucine rich repeats (LRRs), pentraxins, and complement-related proteins. Echinoderms represent the most developed invertebrates and the bridge leading to the primitive chordates, cephalochordates, and urochordates, in which many autologous genes and functions from their ancestors can be found. They exhibit numerous variants of innate recognition and effector molecules, which allow fast and innate responses toward diverse pathogens despite lack of adaptive responses. The primitive vertebrates (agnathans also termed jawless fish) were the first to supplement innate responses with adaptive elements. Thus hagfish and lampreys use LRRs as variable lymphocyte receptors, whereas higher vertebrates [cartilaginous and bony fishes (jawed fish), amphibians, reptiles, birds, and mammals] developed the major histocompatibility complex, T-cell receptors, and B-cell receptors (immunoglobulins) as additional adaptive weaponry to assist innate responses. Extensive cytokine networks are recognized in fish, but related signal molecules can be traced among invertebrates. The high specificity, antibody maturation, immunological memory, and secondary responses of adaptive immunity were so successful that it allowed higher vertebrates to reduce the number of variants of the innate molecules originating from both invertebrates and lower vertebrates. Nonetheless, vertebrates combine the two arms in an intricate inter-dependent network. Organisms at all developmental stages have, in order to survive, applied available genes and functions of which some may have been lost or may have changed function through evolution. The molecular mechanisms involved in evolution of immune molecules, might apart from simple base substitutions be as diverse as gene duplication, deletions, alternative splicing, gene recombination, domain shuffling, retrotransposition, and gene conversion. Further, variable regulation of gene expression may have played a role.
机译:宿主对入侵病原体的反应是所有活生物体的基本生理反应。自从第一个真核细胞出现以来,一系列防御机制已经发展起来,以确保细胞完整性,体内稳态和宿主的存活。无脊椎动物,从原生动物到后生动物,都具有细胞受体,该细胞受体与外来元素结合并将自我与非自我区分开。这种能力是在与吞噬细胞存在相关的多细胞动物中出现的,吞噬细胞的名称各不相同(嗜血细胞,血细胞,回肠细胞),包括动物海绵,蠕虫,刺胞动物,软体动物,甲壳类动物,螯虫,昆虫和棘皮动物(海星和海胆)。基本上,这些细胞具有巨噬细胞样的外观和功能,并且甚至在最早的进化阶段,与这些细胞相关的修复和/或抗战斗功能也很突出。这些细胞具有识别病原体相关分子模式的病原体识别受体,这些分子模式是由各种病原体(病毒,细菌,真菌,原生动物,蠕虫)表达的高度保守的分子结构。清道夫受体,Toll样受体和Nod样受体(NLR)是这一类宿主受体的主要代表。受体-配体结合后,信号转导引发复杂的细胞反应级联反应,导致一系列效应分子中的一个或多个产生。细胞因子甚至在较低的无脊椎动物中也参与了这种响应编排,最终可能导致入侵者被淘汰或失活。重要的先天效应分子是氧和氮物种,抗菌肽,凝集素,纤维蛋白原相关肽,富亮氨酸重复序列(LRR),戊糖毒素和补体相关蛋白。棘皮动物是最发达的无脊椎动物,是通向原始脊索,头针和弓形动物的桥梁,在其中可以找到许多祖先的自体基因和功能。它们表现出先天性识别和效应分子的多种变体,尽管缺乏适应性反应,但仍可对多种病原体进行快速和先天性反应。原始脊椎动物(无脊椎动物也被称为无颚鱼)是第一个通过适应性元素补充先天反应的动物。因此,ha鱼和七lamp鳗使用LRR作为可变的淋巴细胞受体,而高级脊椎动物[软骨和骨鱼(下颌鱼类),两栖动物,爬行动物,鸟类和哺乳动物]则形成了主要的组织相容性复合体,T细胞受体和B细胞受体(免疫球蛋白)作为辅助的先天性辅助武器。在鱼类中可以识别出广泛的细胞因子网络,但是可以在无脊椎动物中追踪到相关的信号分子。高特异性,抗体成熟,免疫记忆和适应性免疫的继发反应是如此成功,以至于高级脊椎动物可以减少源自无脊椎动物和低级脊椎动物的先天分子变体的数量。尽管如此,脊椎动物在复杂的相互依存的网络中将两臂结合在一起。为了生存,处于各个发育阶段的生物都应用了可用的基因和功能,其中一些可能已经丢失或可能通过进化而改变了功能。免疫分子进化所涉及的分子机制,除了简单的碱基取代外,可能还包括基因复制,缺失,可变剪接,基因重组,结构域改组,逆转座和基因转化。此外,基因表达的可变调节可能发挥了作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号