首页> 美国卫生研究院文献>Frontiers in Neuroanatomy >From Matrices to Knowledge: Using Semantic Networks to Annotate the Connectome
【2h】

From Matrices to Knowledge: Using Semantic Networks to Annotate the Connectome

机译:从矩阵到知识:使用语义网络注释Connectome

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The connectome is regarded as the key to brain function in health and disease. Structural and functional neuroimaging enables us to measure brain connectivity in the living human brain. The field of connectomics describes the connectome as a mathematical graph with its connection strengths being represented by connectivity matrices. Graph theory algorithms are used to assess the integrity of the graph as a whole and to reveal brain network biomarkers for brain diseases; however, the faulty wiring of single connections or subnetworks as the structural correlate for neurological or mental diseases remains elusive. We describe a novel approach to represent the knowledge of human brain connectivity by a semantic network – a formalism frequently used in knowledge management to describe the semantic relations between objects. In our novel approach, objects are brain areas and connectivity is modeled as semantic relations among them. The semantic network turns the graph of the connectome into an explicit knowledge base about which brain areas are interconnected. Moreover, this approach can semantically enrich the measured connectivity of an individual subject by the semantic context from ontologies, brain atlases and molecular biological databases. Integrating all measurements and facts into one unified feature space enables cross-modal comparisons and analyses. We used a query mechanism for semantic networks to extract functional, structural and transcriptome networks. We found that in general higher structural and functional connectivity go along with a lower differential gene expression among connected brain areas; however, subcortical motor areas and limbic structures turned out to have a localized high differential gene expression while being strongly connected. In an additional explorative use case, we could show a localized high availability of fkbp5, gmeb1, and gmeb2 genes at a connection hub of temporo-limbic brain networks. Fkbp5 is known for having a role in stress-related psychiatric disorders, while gmeb1 and gmeb2 encode for modulator proteins of the glucocorticoid receptor, a key receptor in the hormonal stress system. Semantic networks tremendously ease working with multimodal neuroimaging and neurogenetics data and may reveal relevant coincidences between transcriptome and connectome networks.
机译:连接体被认为是健康和疾病中脑功能的关键。结构和功能性神经成像使我们能够测量活人大脑中的大脑连接性。连接组学领域将连接组描述为数学图,其连接强度由连接矩阵表示。图论算法用于评估整个图的完整性,并揭示脑部疾病的脑网络生物标记。然而,作为神经或精神疾病的结构相关因素,单一连接或子网的错误布线仍然难以捉摸。我们描述了一种通过语义网络来表示人脑连通性知识的新颖方法-一种形式主义,经常用于知识管理中以描述对象之间的语义关系。在我们的新颖方法中,对象是大脑区域,而连通性被建模为它们之间的语义关系。语义网络将连接组的图变成一个明确的知识库,该知识库关于哪些大脑区域相互连接。此外,这种方法可以通过本体,大脑图谱和分子生物学数据库中的语义上下文在语义上丰富单个主体的测量连接性。将所有度量和事实集成到一个统一的特征空间中,即可进行跨模式比较和分析。我们使用语义网络的查询机制来提取功能,结构和转录组网络。我们发现,通常较高的结构和功能连接性以及相连的大脑区域之间较低的差异基因表达。然而,皮层下运动区和边缘结构在紧密连接的同时却具有局部的高差异基因表达。在另一个探索性用例中,我们可以在临时边缘脑网络的连接中心显示fkbp5,gmeb1和gmeb2基因的局部高可用性。已知Fkbp5在与压力有关的精神疾病中起作用,而gmeb1和gmeb2编码糖皮质激素受体(激素压力系统中的关键受体)的调节蛋白。语义网络极大地简化了多模态神经影像和神经遗传学数据的工作,并可能揭示转录组和连接组网络之间的相关巧合。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号