首页> 美国卫生研究院文献>Frontiers in Neurorobotics >Neuromodulation and Synaptic Plasticity for the Control of Fast Periodic Movement: Energy Efficiency in Coupled Compliant Joints via PCA
【2h】

Neuromodulation and Synaptic Plasticity for the Control of Fast Periodic Movement: Energy Efficiency in Coupled Compliant Joints via PCA

机译:控制快速周期性运动的神经调节和突触可塑性:通过PCA在顺应性关节的能量效率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

There are multiple indications that the nervous system of animals tunes muscle output to exploit natural dynamics of the elastic locomotor system and the environment. This is an advantageous strategy especially in fast periodic movements, since the elastic elements store energy and increase energy efficiency and movement speed. Experimental evidence suggests that coordination among joints involves proprioceptive input and neuromodulatory influence originating in the brain stem. However, the neural strategies underlying the coordination of fast periodic movements remain poorly understood. Based on robotics control theory, we suggest that the nervous system implements a mechanism to accomplish coordination between joints by a linear coordinate transformation from the multi-dimensional space representing proprioceptive input at the joint level into a one-dimensional controller space. In this one-dimensional subspace, the movements of a whole limb can be driven by a single oscillating unit as simple as a reflex interneuron. The output of the oscillating unit is transformed back to joint space via the same transformation. The transformation weights correspond to the dominant principal component of the movement. In this study, we propose a biologically plausible neural network to exemplify that the central nervous system (CNS) may encode our controller design. Using theoretical considerations and computer simulations, we demonstrate that spike-timing-dependent plasticity (STDP) for the input mapping and serotonergic neuromodulation for the output mapping can extract the dominant principal component of sensory signals. Our simulations show that our network can reliably control mechanical systems of different complexity and increase the energy efficiency of ongoing cyclic movements. The proposed network is simple and consistent with previous biologic experiments. Thus, our controller could serve as a candidate to describe the neural control of fast, energy-efficient, periodic movements involving multiple coupled joints.
机译:有多种迹象表明,动物的神经系统会调节肌肉输出,以利用弹性运动系统和环境的自然动力。特别是在快速周期性运动中,这是一种有利的策略,因为弹性元件存储能量并提高能量效率和运动速度。实验证据表明,关节之间的协调涉及本体感受输入和源自脑干的神经调节影响。但是,对快速周期性运动的协调作用的神经策略仍然知之甚少。基于机器人控制理论,我们建议神经系统通过从代表关节水平上本体感受输入的多维空间到一维控制器空间的线性坐标转换,来实现关节之间协调的机制。在此一维子空间中,整个肢体的运动可以由单个振荡单元驱动,就像反射神经元一样简单。振荡单元的输出通过相同的变换变换回关节空间。变换权重对应于运动的主要主成分。在这项研究中,我们提出了一个生物学上可行的神经网络,以例证中枢神经系统(CNS)可以编码我们的控制器设计。使用理论上的考虑和计算机模拟,我们证明了针对输入映射的峰值定时依赖可塑性(STDP)和针对输出映射的血清素能神经调节可以提取感觉信号的主要成分。我们的仿真表明,我们的网络可以可靠地控制复杂程度不同的机械系统,并提高正在进行的周期性运动的能量效率。拟议的网络很简单,并且与以前的生物学实验一致。因此,我们的控制器可以用作描述涉及多个耦合关节的快速,节能,周期性运动的神经控制的候选人。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号