首页> 美国卫生研究院文献>Frontiers in Neurology >Characterization of Interictal Epileptiform Discharges with Time-Resolved Cortical Current Maps Using the Helmholtz–Hodge Decomposition
【2h】

Characterization of Interictal Epileptiform Discharges with Time-Resolved Cortical Current Maps Using the Helmholtz–Hodge Decomposition

机译:使用亥姆霍兹-霍奇分解法利用时间分辨的皮层电流图表征癫痫样发作之间的放电

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Source estimates performed using a single equivalent current dipole (ECD) model for interictal epileptiform discharges (IEDs) which appear unifocal have proven highly accurate in neocortical epilepsies, falling within millimeters of that demonstrated by electrocorticography. Despite this success, the single ECD solution is limited, best describing sources which are temporally stable. Adapted from the field of optics, optical flow analysis of distributed source models of MEG or EEG data has been proposed as a means to estimate the current motion field of cortical activity, or “cortical flow.” The motion field so defined can be used to identify dynamic features of interest such as patterns of directional flow, current sources, and sinks. The Helmholtz–Hodge Decomposition (HHD) is a technique frequently applied in fluid dynamics to separate a flow pattern into three components: (1) a non-rotational scalar potential >U describing sinks and sources, (2) a non-diverging scalar potential >A accounting for vortices, and (3) an harmonic vector field >H. As IEDs seem likely to represent periods of highly correlated directional flow of cortical currents, the >U component of the HHD suggests itself as a way to characterize spikes in terms of current sources and sinks. In a series of patients with refractory epilepsy who were studied with magnetoencephalography as part of their evaluation for possible resective surgery, spike localization with ECD was compared to HHD applied to an optical flow analysis of the same spike. Reasonable anatomic correlation between the two techniques was seen in the majority of patients, suggesting that this method may offer an additional means of characterization of epileptic discharges.
机译:使用单当量电流偶极(ECD)模型对单灶性癫痫样发作(IED)进行的源估计已被证明在新皮层癫痫中具有很高的准确性,其范围在电皮层照相术显示的毫米范围内。尽管取得了成功,但单一的ECD解决方案仍然有限,无法最好地描述时间稳定的信号源。适应光学领域,已经提出了对MEG或EEG数据的分布式源模型进行光流分析,作为估计皮质活动或“皮质流”当前运动场的一种手段。这样定义的运动场可用于识别感兴趣的动态特征,例如定向流,电流源和吸收器的模式。亥姆霍兹-霍奇分解(HHD)是一种经常用于流体动力学中的技术,用于将流型分为三个部分:(1)非旋转标量势> U ,描述汇和源,(2)表示旋涡的非发散标量势> A ,以及(3)谐波矢量场> H 。由于IED可能代表着高度相关的皮层电流定向周期,因此HHD的> U 组件建议将其自身作为表征电流源和吸收峰的一种方式。在一系列脑磁图检查中对一系列难治性癫痫患者进行了磁脑电图检查,作为可能的切除手术的评估方法,将ECD的棘突定位与HHD进行了比较,将其应用于同一棘突的光流分析。在大多数患者中可以看到这两种技术之间的合理解剖相关性,这表明该方法可能提供表征癫痫放电的另一种方法。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号