首页> 美国卫生研究院文献>Frontiers in Neuroscience >Comparison between Frame-Constrained Fix-Pixel-Value and Frame-Free Spiking-Dynamic-Pixel ConvNets for Visual Processing
【2h】

Comparison between Frame-Constrained Fix-Pixel-Value and Frame-Free Spiking-Dynamic-Pixel ConvNets for Visual Processing

机译:用于视觉处理的帧约束固定像素值与无帧尖峰动态像素卷积网络之间的比较

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Most scene segmentation and categorization architectures for the extraction of features in images and patches make exhaustive use of 2D convolution operations for template matching, template search, and denoising. Convolutional Neural Networks (ConvNets) are one example of such architectures that can implement general-purpose bio-inspired vision systems. In standard digital computers 2D convolutions are usually expensive in terms of resource consumption and impose severe limitations for efficient real-time applications. Nevertheless, neuro-cortex inspired solutions, like dedicated Frame-Based or Frame-Free Spiking ConvNet Convolution Processors, are advancing real-time visual processing. These two approaches share the neural inspiration, but each of them solves the problem in different ways. Frame-Based ConvNets process frame by frame video information in a very robust and fast way that requires to use and share the available hardware resources (such as: multipliers, adders). Hardware resources are fixed- and time-multiplexed by fetching data in and out. Thus memory bandwidth and size is important for good performance. On the other hand, spike-based convolution processors are a frame-free alternative that is able to perform convolution of a spike-based source of visual information with very low latency, which makes ideal for very high-speed applications. However, hardware resources need to be available all the time and cannot be time-multiplexed. Thus, hardware should be modular, reconfigurable, and expansible. Hardware implementations in both VLSI custom integrated circuits (digital and analog) and FPGA have been already used to demonstrate the performance of these systems. In this paper we present a comparison study of these two neuro-inspired solutions. A brief description of both systems is presented and also discussions about their differences, pros and cons.
机译:用于提取图像和补丁中的特征的大多数场景分割和分类架构都将2D卷积操作完全用于模板匹配,模板搜索和去噪。卷积神经网络(ConvNets)是可以实现通用生物启发视觉系统的此类架构的一个示例。在标准数字计算机中,就资源消耗而言,二维卷积通常很昂贵,并且对有效的实时应用施加了严格的限制。尽管如此,神经皮质启发性解决方案(例如专用的基于帧或无帧的尖峰ConvNet卷积处理器)正在促进实时视觉处理。这两种方法都具有神经启发性,但是它们各自以不同的方式解决问题。基于帧的ConvNets以非常健壮和快速的方式逐帧处理视频信息,这需要使用和共享可用的硬件资源(例如:乘法器,加法器)。硬件资源通过进出数据来固定和时间复用。因此,内存带宽和大小对于获得良好的性能很重要。另一方面,基于尖峰的卷积处理器是一种无帧替代方案,能够以极低的延迟执行基于尖峰的视觉信息源的卷积,这非常适用于超高速应用。但是,硬件资源需要始终可用,并且不能进行时间​​复用。因此,硬件应该是模块化的,可重新配置的和可扩展的。 VLSI定制集成电路(数字和模拟)和FPGA中的硬件实现已被用来演示这些系统的性能。在本文中,我们对这两种神经启发性解决方案进行了比较研究。简要介绍了这两种系统,并讨论了它们的优缺点。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号