首页> 美国卫生研究院文献>Frontiers in Neuroscience >Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms
【2h】

Robustness of spiking Deep Belief Networks to noise and reduced bit precision of neuro-inspired hardware platforms

机译:将深度信念网络刺入噪声的鲁棒性和神经启发的硬件平台的比特精度降低

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Increasingly large deep learning architectures, such as Deep Belief Networks (DBNs) are the focus of current machine learning research and achieve state-of-the-art results in different domains. However, both training and execution of large-scale Deep Networks require vast computing resources, leading to high power requirements and communication overheads. The on-going work on design and construction of spike-based hardware platforms offers an alternative for running deep neural networks with significantly lower power consumption, but has to overcome hardware limitations in terms of noise and limited weight precision, as well as noise inherent in the sensor signal. This article investigates how such hardware constraints impact the performance of spiking neural network implementations of DBNs. In particular, the influence of limited bit precision during execution and training, and the impact of silicon mismatch in the synaptic weight parameters of custom hybrid VLSI implementations is studied. Furthermore, the network performance of spiking DBNs is characterized with regard to noise in the spiking input signal. Our results demonstrate that spiking DBNs can tolerate very low levels of hardware bit precision down to almost two bits, and show that their performance can be improved by at least 30% through an adapted training mechanism that takes the bit precision of the target platform into account. Spiking DBNs thus present an important use-case for large-scale hybrid analog-digital or digital neuromorphic platforms such as SpiNNaker, which can execute large but precision-constrained deep networks in real time.
机译:越来越大的深度学习体系结构,例如深度信念网络(Deep Belief Networks,DBN)是当前机器学习研究的重点,并在不同领域中取得了最新的成果。但是,大规模深度网络的训练和执行都需要大量的计算资源,从而导致高功率要求和通信开销。正在进行的基于尖峰的硬件平台的设计和构建工作为运行深度神经网络提供了一种替代方案,其功耗大大降低,但必须克服硬件方面的限制,包括噪声和有限的重量精度,以及噪声的固有限制。传感器信号。本文研究了此类硬件约束如何影响DBN的尖峰神经网络实现的性能。特别是,研究了在执行和训练过程中有限的位精度的影响以及硅不匹配对定制混合VLSI实现的突触权重参数的影响。此外,尖峰DBN的网络性能针对尖峰输入信号中的噪声进行了表征。我们的结果表明,尖峰DBN可以忍受非常低的硬件位精度(几乎可以降低到两位),并表明通过考虑目标平台的位精度的自适应训练机制,它们的性能可以提高至少30%。 。因此,尖刺DBN为大规模混合模数或数字神经形态平台(例如SpiNNaker)提供了重要的用例,该平台可以实时执行大型但受精度限制的深度网络。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号