首页> 美国卫生研究院文献>Frontiers in Molecular Biosciences >Dynamics of Human Mitochondrial Complex I Assembly: Implications for Neurodegenerative Diseases
【2h】

Dynamics of Human Mitochondrial Complex I Assembly: Implications for Neurodegenerative Diseases

机译:动态的人类线粒体复合体I大会:对神经退行性疾病的影响。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Neurons are extremely energy demanding cells and highly dependent on the mitochondrial oxidative phosphorylation (OXPHOS) system. Mitochondria generate the energetic potential via the respiratory complexes I to IV, which constitute the electron transport chain (ETC), together with complex V. These redox reactions release energy in the form of ATP and also generate reactive oxygen species (ROS) that are involved in cell signaling but can eventually lead to oxidative stress. Complex I (CI or NADH:ubiquinone oxidoreductase) is the largest ETC enzyme, containing 44 subunits and the main contributor to ROS production. In recent years, the structure of the CI has become available and has provided new insights into CI assembly. A number of chaperones have been identified in the assembly and stability of the mature holo-CI, although they are not part of its final structure. Interestingly, CI dysfunction is the most common OXPHOS disorder in humans and defects in the CI assembly process are often observed. However, the dynamics of the events leading to CI biogenesis remain elusive, which precludes our understanding of how ETC malfunctioning affects neuronal integrity. Here, we review the current knowledge of the structural features of CI and its assembly factors and the potential role of CI misassembly in human disorders such as Complex I Deficiencies or Alzheimer's and Parkinson's diseases.
机译:神经元是非常耗能的细胞,高度依赖于线粒体的氧化磷酸化(OXPHOS)系统。线粒体通过构成电子传输链(ETC)的呼吸复合物I至IV与复合物V一起产生能量。这些氧化还原反应以ATP的形式释放能量,并产生涉及的活性氧(ROS)在细胞信号转导中,但最终会导致氧化应激。复合物I(CI或NADH:泛醌氧化还原酶)是最大的ETC酶,包含44个亚基,是ROS产生的主要贡献者。近年来,配置项的结构已可用,并提供了有关配置项组装的新见解。尽管成熟的holo-CI并非其最终结构的一部分,但已在其组装和稳定性中发现了许多分子伴侣。有趣的是,CI功能障碍是人类最常见的OXPHOS疾病,并且经常观察到CI组装过程中的缺陷。但是,导致CI生物发生的事件的动力学仍然难以捉摸,这使我们无法理解ETC的功能异常如何影响神经元完整性。在这里,我们回顾了CI的结构特征及其组装因子的当前知识,以及CI组装错误在诸如复杂I缺陷或阿尔茨海默氏病和帕金森氏病等人类疾病中的潜在作用。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号