首页> 美国卫生研究院文献>Frontiers in Plant Science >Chloroplast redox imbalance governs phenotypic plasticity: the grand design of photosynthesis revisited
【2h】

Chloroplast redox imbalance governs phenotypic plasticity: the grand design of photosynthesis revisited

机译:叶绿体氧化还原失衡控制表型可塑性:重新审视光合作用的宏伟设计

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Sunlight, the ultimate energy source for life on our planet, enters the biosphere as a direct consequence of the evolution of photoautotrophy. Photoautotrophs must balance the light energy absorbed and trapped through extremely fast, temperature-insensitive photochemistry with energy consumed through much slower, temperature-dependent biochemistry and metabolism. The attainment of such a balance in cellular energy flow between chloroplasts, mitochondria and the cytosol is called photostasis. Photoautotrophs sense cellular energy imbalances through modulation of excitation pressure which is a measure of the relative redox state of QA, the first stable quinone electron acceptor of photosystem II reaction centers. High excitation pressure constitutes a potential stress condition that can be caused either by exposure to an irradiance that exceeds the capacity of C, N, and S assimilation to utilize the electrons generated from the absorbed energy or by low temperature or any stress that decreases the capacity of the metabolic pathways downstream of photochemistry to utilize photosynthetically generated reductants. The similarities and differences in the phenotypic responses between cyanobacteria, green algae, crop plants, and variegation mutants of Arabidopsis thaliana as a function of cold acclimation and photoacclimation are reconciled in terms of differential responses to excitation pressure and the predisposition of photoautotrophs to maintain photostasis. The various acclimation strategies associated with green algae and cyanobacteria versus winter cereals and A. thaliana are discussed in terms of retrograde regulation and the “grand design of photosynthesis” originally proposed by .
机译:阳光是地球上生命的最终能源,它是光养植物进化的直接结果,进入了生物圈。光能自养生物必须平衡通过极快的,对温度不敏感的光化学吸收和捕获的光能与通过非常慢的,与温度有关的生物化学和新陈代谢所消耗的能量之间的平衡。在叶绿体,线粒体和细胞质之间的细胞能量流达到这种平衡称为光晕作用。光能自养生物通过调节激发压力来感知细胞能量失衡,激发压力是对QA的相对氧化还原状态的量度,QA是光系统II反应中心的第一个稳定的醌电子受体。高激发压力构成了一种潜在的应力条件,可能是由于暴露于超过C,N和S同化以利用吸收能量产生的电子的能力的辐照所引起的,或者是由于低温或任何降低该能力的应力引起光化学下游的代谢途径,以利用光合作用产生的还原剂。蓝藻,绿藻,农作物和拟南芥变种突变体之间的表型响应的相似性和差异,根据对冷激和光致适应的差异,通过对激发压力的不同响应和光合养分素的易位性得以维持。绿藻和蓝细菌与冬季谷物和拟南芥相关的各种适应策略,从逆行调节和最初由提出的“光合作用的重大设计”方面进行了讨论。

著录项

相似文献

  • 外文文献
  • 中文文献
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号