首页> 美国卫生研究院文献>Frontiers in Systems Neuroscience >Climbing Fibers Provide Graded Error Signals in Cerebellar Learning
【2h】

Climbing Fibers Provide Graded Error Signals in Cerebellar Learning

机译:攀爬纤维在小脑学习中提供分级的错误信号

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The cerebellum plays a critical role in coordinating and learning complex movements. Although its importance has been well recognized, the mechanisms of learning remain hotly debated. According to the classical cerebellar learning theory, depression of parallel fiber synapses instructed by error signals from climbing fibers, drives cerebellar learning. The uniqueness of long-term depression (LTD) in cerebellar learning has been challenged by evidence showing multi-site synaptic plasticity. In Purkinje cells, long-term potentiation (LTP) of parallel fiber synapses is now well established and it can be achieved with or without climbing fiber signals, making the role of climbing fiber input more puzzling. The central question is how individual Purkinje cells extract global errors based on climbing fiber input. Previous data seemed to demonstrate that climbing fibers are inefficient instructors, because they were thought to carry “binary” error signals to individual Purkinje cells, which significantly constrains the efficiency of cerebellar learning in several regards. In recent years, new evidence has challenged the traditional view of “binary” climbing fiber responses, suggesting that climbing fibers can provide graded information to efficiently instruct individual Purkinje cells to learn. Here we review recent experimental and theoretical progress regarding modulated climbing fiber responses in Purkinje cells. Analog error signals are generated by the interaction of varying climbing fibers inputs with simultaneous other synaptic input and with firing states of targeted Purkinje cells. Accordingly, the calcium signals which trigger synaptic plasticity can be graded in both amplitude and spatial range to affect the learning rate and even learning direction. We briefly discuss how these new findings complement the learning theory and help to further our understanding of how the cerebellum works.
机译:小脑在协调和学习复杂运动中起着至关重要的作用。尽管其重要性已得到公认,但学习机制仍处于激烈辩论中。根据经典的小脑学习理论,平行神经突触的下压由攀爬纤维发出的错误信号指示,驱动小脑学习。小脑学习中长期抑郁症(LTD)的独特性已受到证据表明多部位突触可塑性的挑战。在浦肯野细胞中,平行纤维突触的长期增强(LTP)现在已经很成熟,无论是否有攀登纤维信号都可以实现,这使攀登纤维输入的作用更加令人费解。中心问题是各个Purkinje细胞如何根据攀爬纤维输入提取全局误差。以前的数据似乎表明攀岩纤维是低效的教练,因为人们认为攀岩纤维将“二进制”错误信号传递给单个的Purkinje细胞,这在很多方面显着限制了小脑学习的效率。近年来,新证据挑战了传统的“二进制”攀爬纤维反应的观点,表明攀爬纤维可以提供分级信息,以有效地指导各个Purkinje细胞学习。在这里,我们审查有关浦肯野细胞中调制的攀登纤维反应的最新实验和理论进展。模拟误差信号是由变化的攀爬纤维输入与同时的其他突触输入以及目标浦肯野细胞的激发状态之间的相互作用产生的。因此,触发突触可塑性的钙信号可以在幅度和空间范围内分级,以影响学习率甚至学习方向。我们简要讨论了这些新发现如何补充学习理论,并有助于进一步了解小脑的工作原理。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号