首页> 美国卫生研究院文献>G3: GenesGenomesGenetics >Chemical Suppression of Defects in Mitotic Spindle Assembly Redox Control and Sterol Biosynthesis by Hydroxyurea
【2h】

Chemical Suppression of Defects in Mitotic Spindle Assembly Redox Control and Sterol Biosynthesis by Hydroxyurea

机译:化学抑制有丝分裂纺锤体组装氧化还原控制和甾醇生物合成中的缺陷

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We describe the results of a systematic search for a class of hitherto-overlooked chemical-genetic interactions in the Saccharomyces cerevisiae genome, which exists between a detrimental genetic mutation and a chemical/drug that can ameliorate, rather than exacerbate, that detriment. We refer to this type of interaction as “chemical suppression.” Our work was driven by the hypothesis that genome instability in a certain class of mutants could be alleviated by mild replication inhibition using chemicals/drugs. We queried a collection of conditionally lethal, i.e., temperature-sensitive, alleles representing 40% of the yeast essential genes for those mutants whose growth defect can be suppressed by hydroxyurea (HU), known as a potent DNA replication inhibitor, at the restrictive temperature. Unexpectedly, we identified a number of mutants defective in diverse cellular pathways other than DNA replication. Here we report that HU suppresses selected mutants defective in the kinetochore-microtubule attachment pathway during mitotic chromosome segregation. HU also suppresses an -1 mutant defective for a thiol oxidase of the endoplasmic reticulum by providing oxidation equivalents. Finally, we report that HU suppresses an -1 mutant defective for a C-3 sterol dehydrogenase through regulating iron homeostasis and in turn impacting ergosterol biosynthesis. We further demonstrate that cells carrying the -1 mutation show an increased rate of mitochondrial DNA loss and delayed G1 to S phase transition. We conclude that systematic gathering of a compendium of “chemical suppression” of yeast mutants by genotoxic drugs will not only enable the identification of novel functions of both chemicals and genes, but also have profound implications in cautionary measures of anticancer intervention in humans.
机译:我们描述了对酿酒酵母基因组中迄今为止被忽视的一类化学-遗传相互作用进行系统搜索的结果,该相互作用存在于有害的遗传突变与可以缓解而不是加剧这种危害的化学/药物之间。我们将这种相互作用称为“化学抑制”。我们的工作是基于这样的假设,即通过使用化学药品/药物进行轻度复制抑制可以缓解某些类别的突变体中的基因组不稳定性。我们查询了条件致死的等温等位基因的集合,这些等位基因代表那些在极限温度下其生长缺陷可以被羟基尿素(HU)(一种有效的DNA复制抑制剂)抑制的突变体的酵母必需基因的40%。 。出乎意料的是,我们发现了除DNA复制以外的多种细胞途径均存在缺陷的突变体。在这里我们报告说,胡抑制有丝分裂染色体分离过程中在动粒-微管附着途径中缺陷的选定突变体。 HU还通过提供氧化当量来抑制内质网硫醇氧化酶的-1突变缺陷型。最后,我们报道了HU通过调节铁稳态并进而影响麦角甾醇的生物合成来抑制C-3甾醇脱氢酶的-1突变缺陷。我们进一步证明携带-1突变的细胞显示出增加的线粒体DNA丢失率和延迟的G1到S相转变。我们得出的结论是,通过基因毒性药物系统地收集酵母突变体的“化学抑制”纲要,不仅能够确定化学物和基因的新功能,而且在预防人类癌症干预措施中也具有深远的意义。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号