首页> 美国卫生研究院文献>G3: GenesGenomesGenetics >Mature Microsatellites: Mechanisms Underlying Dinucleotide Microsatellite Mutational Biases in Human Cells
【2h】

Mature Microsatellites: Mechanisms Underlying Dinucleotide Microsatellite Mutational Biases in Human Cells

机译:成熟的微卫星:人类细胞中二核苷酸微卫星突变偏向酶的机制。

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Dinucleotide microsatellites are dynamic DNA sequences that affect genome stability. Here, we focused on mature microsatellites, defined as pure repeats of lengths above the threshold and unlikely to mutate below it in a single mutational event. We investigated the prevalence and mutational behavior of these sequences by using human genome sequence data, human cells in culture, and purified DNA polymerases. Mature dinucleotides (≥10 units) are present within exonic sequences of >350 genes, resulting in vulnerability to cellular genetic integrity. Mature dinucleotide mutagenesis was examined experimentally using ex vivo and in vitro approaches. We observe an expansion bias for dinucleotide microsatellites up to 20 units in length in somatic human cells, in agreement with previous computational analyses of germ-line biases. Using purified DNA polymerases and human cell lines deficient for mismatch repair (MMR), we show that the expansion bias is caused by functional MMR and is not due to DNA polymerase error biases. Specifically, we observe that the MutSα and MutLα complexes protect against expansion mutations. Our data support a model wherein different MMR complexes shift the balance of mutations toward deletion or expansion. Finally, we show that replication fork progression is stalled within long dinucleotides, suggesting that mutational mechanisms within long repeats may be distinct from shorter lengths, depending on the biochemistry of fork resolution. Our work combines computational and experimental approaches to explain the complex mutational behavior of dinucleotide microsatellites in humans.
机译:二核苷酸微卫星是影响基因组稳定性的动态DNA序列。在这里,我们专注于成熟的微卫星,定义为长度超过阈值且在单个突变事件中不可能在阈值以下发生突变的纯重复序列。我们通过使用人类基因组序列数据,培养的人类细胞和纯化的DNA聚合酶研究了这些序列的普遍性和突变行为。成熟的二核苷酸(≥10个单位)存在于> 350个基因的外显子序列中,导致对细胞遗传完整性的脆弱性。使用离体和体外方法实验性地检查了成熟的二核苷酸诱变。我们观察到在人体细胞中长度达20个单位的二核苷酸微卫星的扩增偏差,与先前对种系偏差的计算分析一致。使用纯化的DNA聚合酶和缺乏错配修复(MMR)的人类细胞系,我们显示出扩展偏差是由功能性MMR引起的,而不是由于DNA聚合酶错误偏差引起的。具体而言,我们观察到MutSα和MutLα复合物可防止扩增突变。我们的数据支持一个模型,其中不同的MMR复合物将突变的平衡转移到缺失或扩展上。最后,我们显示复制叉的进展在长双核苷酸内停滞,这表明长重复序列内的突变机制可能与较短的长度不同,这取决于叉的分辨能力。我们的工作结合了计算和实验方法来解释人类中二核苷酸微卫星的复杂突变行为。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号