首页> 美国卫生研究院文献>Genetics >Second-Generation Drosophila Chemical Tags: Sensitivity Versatility and Speed
【2h】

Second-Generation Drosophila Chemical Tags: Sensitivity Versatility and Speed

机译:第二代果蝇化学标签:敏感性多功能性和速度

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Labeling and visualizing cells and subcellular structures within thick tissues, whole organs, and even intact animals is key to studying biological processes. This is particularly true for studies of neural circuits where neurons form submicron synapses but have arbors that may span millimeters in length. Traditionally, labeling is achieved by immunofluorescence; however, diffusion of antibody molecules (>100 kDa) is slow and often results in uneven labeling with very poor penetration into the center of thick specimens; these limitations can be partially addressed by extending staining protocols to over a week (Drosophila brain) and months (mice). Recently, we developed an alternative approach using genetically encoded chemical tags CLIP, SNAP, Halo, and TMP for tissue labeling; this resulted in >100-fold increase in labeling speed in both mice and Drosophila, at the expense of a considerable drop in absolute sensitivity when compared to optimized immunofluorescence staining. We now present a second generation of UAS- and LexA-responsive CLIPf, SNAPf, and Halo chemical labeling reagents for flies. These multimerized tags, with translational enhancers, display up to 64-fold increase in sensitivity over first-generation reagents. In addition, we developed a suite of conditional reporters (4xSNAPf tag and CLIPf-SNAPf-Halo2) that are activated by the DNA recombinase Bxb1. Our new reporters can be used with weak and strong GAL4 and LexA drivers and enable stochastic, intersectional, and multicolor Brainbow labeling. These improvements in sensitivity and experimental versatility, while still retaining the substantial speed advantage that is a signature of chemical labeling, should significantly increase the scope of this technology.
机译:标记和可视化厚组织,整个器官乃至完整动物内的细胞和亚细胞结构是研究生物学过程的关键。对于神经回路的研究尤其如此,在该回路中,神经元形成亚微米突触,但具有可能跨越毫米长度的乔木。传统上,标记是通过免疫荧光实现的。但是,抗体分子(> 100 kDa)的扩散很慢,通常会导致标记不均,并且很难渗透到厚样品的中心。这些限制可以通过将染色方案延长至一周(果蝇大脑)和几个月(小鼠)来解决。最近,我们开发了使用遗传编码的化学标签CLIP,SNAP,Halo和TMP进行组织标记的替代方法;与优化的免疫荧光染色相比,这会导致小鼠和果蝇的标记速度增加> 100倍,但代价是绝对灵敏度显着下降。现在,我们介​​绍了用于果蝇的第二代响应UAS和LexA的CLIPf,SNAPf和Halo化学标记试剂。这些具有翻译增强子的多聚标签比第一代试剂的灵敏度提高了64倍。此外,我们开发了一套条件报告基因(4xSNAPf标签和CLIPf-SNAPf-Halo2),它们被DNA重组酶Bxb1激活。我们的新报告器可与弱和强GAL4和LexA驱动程序一起使用,并启用随机,交叉和多色Brainbow标记。灵敏度和实验通用性的这些改进,尽管仍保留了化学标记的显着速度优势,但应会大大扩大该技术的范围。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号