首页> 美国卫生研究院文献>Genetics >A Markov Chain Monte Carlo Approach for Joint Inference of Population Structure and Inbreeding Rates From Multilocus Genotype Data
【2h】

A Markov Chain Monte Carlo Approach for Joint Inference of Population Structure and Inbreeding Rates From Multilocus Genotype Data

机译:马尔可夫链蒙特卡罗方法从多基因座基因型数据联合推断种群结构和近交率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

Nonrandom mating induces correlations in allelic states within and among loci that can be exploited to understand the genetic structure of natural populations (Wright 1965). For many species, it is of considerable interest to quantify the contribution of two forms of nonrandom mating to patterns of standing genetic variation: inbreeding (mating among relatives) and population substructure (limited dispersal of gametes). Here, we extend the popular Bayesian clustering approach STRUCTURE (Pritchard et al. 2000) for simultaneous inference of inbreeding or selfing rates and population-of-origin classification using multilocus genetic markers. This is accomplished by eliminating the assumption of Hardy–Weinberg equilibrium within clusters and, instead, calculating expected genotype frequencies on the basis of inbreeding or selfing rates. We demonstrate the need for such an extension by showing that selfing leads to spurious signals of population substructure using the standard STRUCTURE algorithm with a bias toward spurious signals of admixture. We gauge the performance of our method using extensive coalescent simulations and demonstrate that our approach can correct for this bias. We also apply our approach to understanding the population structure of the wild relative of domesticated rice, Oryza rufipogon, an important partially selfing grass species. Using a sample of n = 16 individuals sequenced at 111 random loci, we find strong evidence for existence of two subpopulations, which correlates well with geographic location of sampling, and estimate selfing rates for both groups that are consistent with estimates from experimental data (s ≈ 0.48–0.70).
机译:非随机交配会在基因座内和基因座之间的等位基因状态中引起相关性,可利用这些相关性来了解自然种群的遗传结构(Wright 1965)。对于许多物种而言,量化两种非随机交配对站立的遗传变异模式的贡献是相当有意义的:近交(近亲交配)和种群亚结构(配子有限扩散)。在这里,我们扩展了流行的贝叶斯聚类方法STRUCTURE(Pritchard等,2000),以利用多基因座遗传标记同时推断近交或自交率以及起源种群的分类。这是通过消除群集中的Hardy-Weinberg平衡假设,而是根据近交或自交率计算预期的基因型频率来实现的。我们通过使用标准STRUCTURE算法显示自交会导致总体子结构的杂散信号,并偏向混合杂散信号,从而证明了这种扩展的必要性。我们使用广泛的合并模拟来评估我们的方法的性能,并证明我们的方法可以纠正这种偏差。我们还运用我们的方法来了解驯化水稻Oryza rufipogon(一种重要的部分自交的草种)的野生近缘种的种群结构。使用以111个随机基因座测序的n = 16个个体的样本,我们发现存在两个亚群的有力证据,这与采样的地理位置密切相关,并估计两组的自交率与实验数据的估计值相符(s ≈0.48–0.70)。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号