首页> 美国卫生研究院文献>Materials >Reduction Temperature-Dependent Nanoscale Morphological Transformation and Electrical Conductivity of Silicate Glass Microchannel Plate
【2h】

Reduction Temperature-Dependent Nanoscale Morphological Transformation and Electrical Conductivity of Silicate Glass Microchannel Plate

机译:硅酸盐玻璃微通道板的还原温度依赖性纳米形貌转变和电导率

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Lead silicate glasses are fundamental materials to a microchannel plate (MCP), which is a two dimensional array of a microscopic channel charge particle multiplier. Hydrogen reduction is the core stage to determine the electrical conductivity of lead silicate glass MCP multipliers. The nanoscale morphologies and microscopic potential distributions of silicate glass at different reduction temperatures were investigated via atomic force microscope (AFM) and Kelvin force microscopy (KFM). We found that the bulk resistance of MCPs ballooned exponentially with the spacing of conducting islands. Moreover, bulk resistance and the spacing of conducting islands both have the BiDoseResp trend dependence on the hydrogen reduction temperature. Elements composition and valence states of lead silicate glass were characterized by X-ray photoelectron spectroscopy (XPS). The results indicated that the conducting island was an assemblage of the Pb atom originated from the reduction of Pb2+ and Pb4+. Thus, this showed the important influence of the hydrogen temperature and nanoscale morphological transformation on modulating the physical effects of MCPs, and opened up new possibilities to characterize the nanoscale electronic performance of multiphase silicate glass.
机译:硅酸铅玻璃是微通道板(MCP)的基本材料,微通道板是微通道电荷粒子倍增器的二维阵列。氢还原是确定硅酸铅玻璃MCP倍增器电导率的核心阶段。通过原子力显微镜(AFM)和开尔文力显微镜(KFM)研究了不同还原温度下硅酸盐玻璃的纳米级形貌和微观电势分布。我们发现,MCP的体电阻随导电岛的间距呈指数增长。此外,体电阻和导电岛的间距都具有BiDoseResp趋势依赖于氢还原温度。用X射线光电子能谱(XPS)表征了硅酸铅玻璃的元素组成和价态。结果表明,导电岛是Pb原子的集合体,其起源于Pb 2 + 和Pb 4 + 的还原。因此,这表明了氢温度和纳米级形态转变对调节MCPs物理效应的重要影响,并为表征多相硅酸盐玻璃的纳米级电子性能开辟了新的可能性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号