首页> 美国卫生研究院文献>Bacteriological Reviews >Microbial Methylation of Metalloids: Arsenic Antimony and Bismuth
【2h】

Microbial Methylation of Metalloids: Arsenic Antimony and Bismuth

机译:准金属的微生物甲基化:砷锑和铋

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

A significant 19th century public health problem was that the inhabitants of many houses containing wallpaper decorated with green arsenical pigments experienced illness and death. The problem was caused by certain fungi that grew in the presence of inorganic arsenic to form a toxic, garlic-odored gas. The garlic odor was actually put to use in a very delicate microbiological test for arsenic. In 1933, the gas was shown to be trimethylarsine. It was not until 1971 that arsenic methylation by bacteria was demonstrated. Further research in biomethylation has been facilitated by the development of delicate techniques for the determination of arsenic species. As described in this review, many microorganisms (bacteria, fungi, and yeasts) and animals are now known to biomethylate arsenic, forming both volatile (e.g., methylarsines) and nonvolatile (e.g., methylarsonic acid and dimethylarsinic acid) compounds. The enzymatic mechanisms for this biomethylation are discussed. The microbial conversion of sodium arsenate to trimethylarsine proceeds by alternate reduction and methylation steps, with S-adenosylmethionine as the usual methyl donor. Thiols have important roles in the reductions. In anaerobic bacteria, methylcobalamin may be the donor. The other metalloid elements of the periodic table group 15, antimony and bismuth, also undergo biomethylation to some extent. Trimethylstibine formation by microorganisms is now well established, but this process apparently does not occur in animals. Formation of trimethylbismuth by microorganisms has been reported in a few cases. Microbial methylation plays important roles in the biogeochemical cycling of these metalloid elements and possibly in their detoxification. The wheel has come full circle, and public health considerations are again important.
机译:19世纪一个重要的公共卫生问题是,许多装有绿色砷颜料装饰墙纸的房屋的居民都患病和死亡。问题是由于某些真菌在无机砷的存在下生长而形成有毒的大蒜味气体而引起的。实际上,大蒜味已用于非常精细的砷微生物学测试中。 1933年,这种气体被证明是三甲基ar。直到1971年,细菌的砷甲基化才被证实。用于确定砷种类的精密技术的发展促进了生物甲基化的进一步研究。如本综述所述,现在已知许多微生物(细菌,真菌和酵母)和动物会生物砷化砷,从而形成挥发性(例如甲基ar啶)和非挥发性(例如甲基ar酸和二甲基ar啶酸)化合物。讨论了这种生物甲基化的酶机制。砷酸钠向三甲基ar的微生物转化是通过交替的还原和甲基化步骤进行的,其中S-腺苷甲硫氨酸为通常的甲基供体。硫醇在减少量中起重要作用。在厌氧细菌中,甲基钴胺素可能是供体。元素周期表中第15组的其他准金属元素(锑和铋)也在一定程度上经历了生物甲基化。现在已经很好地确定了由微生物形成三甲基stibine的过程,但是该过程显然不会在动物中发生。在少数情况下,已经报道了由微生物形成三甲基铋。微生物甲基化在这些准金属元素的生物地球化学循环中以及可能在其解毒中起着重要作用。方向盘已经圆了,公共卫生方面的考虑也很重要。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号