首页> 美国卫生研究院文献>ACS AuthorChoice >Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations
【2h】

Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations

机译:确定用于明确溶剂化生物分子模拟的碱金属和卤化物单价离子参数

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Alkali (Li+, Na+, K+, Rb+, and Cs+) and halide (F, Cl, Br, and I) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models. Although it has been clearly demonstrated that truly accurate treatments of ions will require inclusion of nonadditivity and polarizability (particularly with the anions) and ultimately even a quantum mechanical treatment, our goal was to simply push the limits of the additive treatments to see if a balanced model could be created. The applied methodology is general and can be extended to other ions and to polarizable force-field models. Our starting point centered on observations from long simulations of biomolecules in salt solution with the AMBER force fields where salt crystals formed well below their solubility limit. The likely cause of the artifact in the AMBER parameters relates to the naive mixing of the Smith and Dang chloride parameters with AMBER-adapted Åqvist cation parameters. To provide a more appropriate balance, we reoptimized the parameters of the Lennard-Jones potential for the ions and specific choices of water models. To validate and optimize the parameters, we calculated hydration free energies of the solvated ions and also lattice energies (LE) and lattice constants (LC) of alkali halide salt crystals. This is the first effort that systematically scans across the Lennard-Jones space (well depth and radius) while balancing ion properties like LE and LC across all pair combinations of the alkali ions and halide ions. The optimization across the entire monovalent series avoids systematic deviations. The ion parameters developed, optimized, and characterized were targeted for use with some of the most commonly used rigid and nonpolarizable water models, specifically TIP3P, TIP4PEW, and SPC/E. In addition to well reproducing the solution and crystal properties, the new ion parameters well reproduce binding energies of the ions to water and the radii of the first hydration shells.
机译:碱(Li + ,Na + ,K + ,Rb + 和Cs + )和卤离子(F -,Cl -,Br -和I -)离子在许多生物现象中起着重要作用,其作用范围从生物分子结构的稳定化到对生物分子动力学的影响,再到对稳态和信号传递的关键生理影响。为了在生物分子结构,动力学,折叠,催化和功能的原子模拟中正确建模离子相互作用和稳定性,至关重要的是必须有一个精确的模型或一价离子的表示形式。一个好的模型需要同时重现离子的许多特性,包括它们的结构,动力学,溶剂化,以及这些离子在晶体和溶液中的相互作用以及离子与其他分子的相互作用。目前,生物分子的最佳力场采用简单的加性,不可极化和成对的原子相互作用势。在这项工作中,我们描述了我们如何在成对的库伦比和6-12 Lennard-Jones框架内建立更好的单价离子模型的工作,其中模型经过调整以平衡Ewald模拟中的晶体和溶液性质,并选择了一些著名的方法水模型。尽管已经清楚地表明,对离子进行真正准确的处理将需要包括非可加性和极化性(尤其是阴离子),甚至需要进行量子机械处理,但我们的目标是简单地限制加成处理的极限,以查看是否平衡可以创建模型。应用的方法是通用的,可以扩展到其他离子和可极化的力场模型。我们的出发点集中在长期模拟盐溶液中生物分子的观察结果以及AMBER力场,其中盐晶体的形成远低于其溶解度极限。 AMBER参数中伪像的可能原因与Smith和Dang氯化物参数与AMBER适应性Åqvist阳离子参数的天真的混合有关。为了提供更适当的平衡,我们重新优化了离子的Lennard-Jones电势参数和水模型的特定选择。为了验证和优化参数,我们计算了溶剂化离子的水合自由能以及碱金属卤化物盐晶体的晶格能(LE)和晶格常数(LC)。这是系统性地扫描整个Lennard-Jones空间(井深度和半径),同时在碱金属离子和卤离子的所有配对组合之间平衡LE和LC等离子属性的首次尝试。整个单价序列的优化避免了系统偏差。开发,优化和表征的离子参数的目标是与某些最常用的刚性和非极化水模型一起使用,特别是TIP3P,TIP4PEW和SPC / E。除了很好地再现溶液和晶体特性外,新的离子参数还可以很好地再现离子与水的结合能以及第一水合壳的半径。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号