首页> 美国卫生研究院文献>ACS AuthorChoice >The Surprising in Vivo Instability of Near-IR-Absorbing Hollow Au–Ag Nanoshells
【2h】

The Surprising in Vivo Instability of Near-IR-Absorbing Hollow Au–Ag Nanoshells

机译:近红外吸收空心Au-Ag纳米壳的体内不稳定性令人惊讶

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Photothermal ablation based on resonant illumination of near-infrared-absorbing noble metal nanoparticles that have accumulated in tumors is a highly promising cancer therapy, currently in multiple clinical trials. A crucial aspect of this therapy is the nanoparticle size for optimal tumor uptake. A class of nanoparticles known as hollow Au (or Au–Ag) nanoshells (HGNS) is appealing because near-IR resonances are achievable in this system with diameters less than 100 nm. However, in this study, we report a surprising finding that in vivo HGNS are unstable, fragmenting with the Au and the remnants of the sacrificial Ag core accumulating differently in various organs. We synthesized 43, 62, and 82 nm diameter HGNS through a galvanic replacement reaction, with nanoparticles of all sizes showing virtually identical NIR resonances at ∼800 nm. A theoretical model indicated that alloying, residual Ag in the nanoparticle core, nanoparticle porosity, and surface defects all contribute to the presence of the plasmon resonance at the observed wavelength, with the major contributing factor being the residual Ag. While PEG functionalization resulted in stable nanoparticles under laser irradiation in solution, an anomalous, strongly element-specific biodistribution observed in tumor-bearing mice suggests that an avid fragmentation of all three sizes of nanoparticles occurred in vivo. Stability studies across a wide range of pH environments and in serum confirmed HGNS fragmentation. These results show that NIR resonant HGNS contain residual Ag, which does not stay contained within the HGNS in vivo. This demonstrates the importance of tracking both materials of a galvanic replacement nanoparticle in biodistribution studies and of performing thorough nanoparticle stability studies prior to any intended in vivo trial application.
机译:基于在肿瘤中累积的吸收近红外的贵金属纳米粒子的共振照明的光热消融是一种很有前途的癌症治疗方法,目前在多项临床试验中。该疗法的一个关键方面是纳米颗粒的大小,以实现最佳的肿瘤吸收。一类称为空心金(或金-银)纳米壳(HGNS)的纳米颗粒很有吸引力,因为在此系统中,直径小于100 nm的纳米粒子可以实现近红外共振。但是,在这项研究中,我们报告了一个令人惊讶的发现,即体内HGNS不稳定,会与金和牺牲Ag核心的残余物在不同器官中积累不同而碎裂。我们通过电取代反应合成了43、62和82 nm直径的HGNS,所有尺寸的纳米粒子在〜800 nm处显示出几乎相同的NIR共振。一个理论模型表明,合金化,纳米颗粒核中的残留Ag,纳米颗粒的孔隙率和表面缺陷都有助于在观察到的波长下出现等离振子共振,主要的影响因素是残留Ag。尽管PEG功能化可在溶液中的激光辐照下产生稳定的纳米粒子,但在荷瘤小鼠中观察到的异常,强烈的元素特异性生物分布异常表明,体内所有三种尺寸的纳米粒子均发生了剧烈的断裂。在广泛的pH环境和血清中进行的稳定性研究证实了HGNS片段化。这些结果表明,NIR共振HGNS含有残留的Ag,在体内不会残留在HGNS中。这证明了在生物分布研究中追踪电流替代纳米粒子的两种材料以及在任何预期的体内试验应用之前进行彻底的纳米粒子稳定性研究的重要性。

著录项

相似文献

  • 外文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号