首页> 美国卫生研究院文献>ACS AuthorChoice >Influenceof Structural Heterogeneity on Diffusionof CH4 and CO2 in Silicon Carbide-Derived NanoporousCarbon
【2h】

Influenceof Structural Heterogeneity on Diffusionof CH4 and CO2 in Silicon Carbide-Derived NanoporousCarbon

机译:影响异质性对扩散的影响碳化硅衍生的纳米孔中CH4和CO2的分布碳

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

We investigate the influence of structural heterogeneity on the transport properties of simple gases in a Hybrid Reverse Monte Carlo (HRMC) constructed model of silicon carbide-derived carbon (SiC-DC). The energy landscape of the system is determined based on free energy analysis of the atomistic model. The overall energy barriers of the system for different gases are computed along with important properties, such as Henry constant and differential enthalpy of adsorption at infinite dilution, and indicate hydrophobicity of the SiC-DC structure and its affinity for CO2 and CH4 adsorption. We also study the effect of molecular geometry, pore structure and energy heterogeneity considering different hopping scenarios for diffusion of CO2 and CH4 through ultramicropores using the Nudged Elastic Band (NEB) method. It is shown that the energy barrier of a hopping molecule is very sensitive to the shape of the pore entry. We provide evidence for the influence of structural heterogeneity on self-diffusivity of methane and carbon dioxide using moleculardynamics simulation, based on a maximum in the variation of self-diffusivitywith loading. A comparison of the MD simulation results with self-diffusivitiesfrom quasi-elastic neutron scattering (QENS) measurements and, withmacroscopic uptake-based low-density transport coefficients, revealsthe existence of internal barriers not captured in MD simulation andQENS experiments. Nevertheless, the simulation and macroscopic uptake-baseddiffusion coefficients agree within a factor of 2–3, indicatingthat our HRMC model structure captures most of the important energybarriers affecting the transport of CH4 in the nanostructureof SiC-DC.
机译:我们在碳化硅衍生碳(SiC-DC)混合反向蒙特卡洛(HRMC)构造的模型中研究了结构异质性对简单气体传输特性的影响。系统的能源格局是基于原子模型的自由能分析确定的。计算系统对于不同气体的总能垒以及重要特性,例如无限稀释时的亨利常数和吸附微分焓,并表明SiC-DC结构的疏水性及其对CO2和CH4吸附的亲和力。我们还使用微动弹性带(NEB)方法研究了考虑不同跳跃情况下CO2和CH4通过超微孔扩散的分子几何形状,孔结构和能量异质性的影响。结果表明,跳跃分子的能垒对孔的形状非常敏感。我们提供了分子异质结构对甲烷和二氧化碳自扩散性影响的证据动力学仿真,基于自扩散率的最大值与加载。 MD模拟结果与自扩散性的比较来自准弹性中子散射(QENS)测量,以及基于宏观吸收的低密度传输系数,揭示了MD模拟中未捕获的内部障碍的存在;以及QENS实验。尽管如此,基于模拟和宏观摄取扩散系数在2-3的范围内一致,表明我们的HRMC模型结构捕获了大部分重要能量阻碍CH4在纳米结构中传输的障碍SiC-DC。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号