首页> 美国卫生研究院文献>ACS AuthorChoice >Mussel Coating Protein-Derived Complex CoacervatesMitigate Frictional Surface Damage
【2h】

Mussel Coating Protein-Derived Complex CoacervatesMitigate Frictional Surface Damage

机译:贻贝涂层蛋白衍生的复合凝聚层减轻摩擦表面损伤

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。
获取外文期刊封面目录资料

摘要

The role of friction in the functional performance of biomaterial interfaces is widely reckoned to be critical and complicated but poorly understood. To better understand friction forces, we investigated the natural adaptation of the holdfast or byssus of mussels that live in high-energy surf habitats. As the outermost covering of the byssus, the cuticle deserves particular attention for its adaptations to frictional wear under shear. In this study, we coacervated one of three variants of a key cuticular component, mussel foot protein 1, mfp-1 [(1) Mytilus californianus mcfp-1, (2) rmfp-1, and (3) rmfp-1-Dopa], with hyaluronic acid (HA) and investigated the wear protection capabilities of these coacervates to surfaces (mica) during shear. Native mcfp-1/HA coacervates had an intermediate coefficient of friction (μ ∼0.3) but conferred excellent wear protection to mica with no damage from applied loads, F⊥, as high as 300 mN (pressure, P, > 2 MPa). Recombinant rmfp-1/HA coacervates exhibited a comparable coefficient of friction (μ ∼0.3); however, wear protection was significantly inferior(damage at F⊥ > 60 mN) comparedwith that of native protein coacervates. Wear protection of rmfp-1/HAcoacervates increased 5-fold upon addition of the surface adhesivegroup 3,4-dihydroxyphenylalanine, (Dopa). We propose a Dopa-dependentwear protection mechanism to explain the differences in wear protectionbetween coacervates. Our results reveal a significant untapped potentialfor coacervates in applications that require adhesion, lubrication,and wear protection. These applications include artificial joints,contact lenses, dental sealants, and hair and skin conditioners.
机译:人们普遍认为,摩擦在生物材料界面功能性能中的作用是关键和复杂的,但知之甚少。为了更好地了解摩擦力,我们研究了生活在高能量冲浪栖息地中的贻贝的固着物或虾的自然适应性。作为囊的最外层覆盖层,表皮因其在剪切作用下的摩擦磨损而特别受关注。在这项研究中,我们巩固了关键表皮成分的三种变体之一,贻贝足蛋白1,mfp-1 [(1)致病的Mytilus californianus mcfp-1,(2)rmfp-1和(3)rmfp-1-Dopa ],透明质酸(HA)并研究了这些凝聚层在剪切过程中对表面(云母)的耐磨保护能力。天然的mcfp-1 / HA凝聚层具有中等的摩擦系数(μ〜0.3),但对云母具有出色的磨损保护作用,而不会受到高达300 mN(压力P> 2 MPa)的施加载荷F 1的损害。重组rmfp-1 / HA凝聚层具有可比的摩擦系数(μ〜0.3);但是,耐磨性明显差(F⊥> 60 mN时的损坏)比较与天然蛋白质凝聚层。 rmfp-1 / HA的磨损保护加入表面胶后凝聚层增加5倍3,4-二羟基苯丙氨酸(Dopa)。我们建议依赖于多巴磨损保护机制解释磨损保护的差异在凝聚层之间。我们的结果显示出巨大的未开发潜力用于需要粘合,润滑,和磨损保护。这些应用包括人造关节,隐形眼镜,牙齿密封剂以及头发和皮肤调理剂。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号