首页> 美国卫生研究院文献>ACS AuthorChoice >IsotopeFractionation Pinpoints Membrane Permeabilityas a Barrier to Atrazine Biodegradation in Gram-negative Polaromonas sp. Nea-C
【2h】

IsotopeFractionation Pinpoints Membrane Permeabilityas a Barrier to Atrazine Biodegradation in Gram-negative Polaromonas sp. Nea-C

机译:同位素分级确定膜的渗透性作为革兰氏阴性单孢菌属中At去津生物降解的障碍。 Nea-C

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Biodegradation of persistent pesticides like atrazine often stalls at low concentrations in the environment. While mass transfer does not limit atrazine degradation by the Gram-positive Arthrobacter aurescens TC1 at high concentrations (>1 mg/L), evidence of bioavailability limitations is emerging at trace concentrations (<0.1 mg/L). To assess the bioavailability constraints on biodegradation, the roles of cell wall physiology and transporters remain imperfectly understood. Here, compound-specific isotope analysis (CSIA) demonstrates that cell wall physiology (i.e., the difference between Gram-negative and Gram-positive bacteria) imposes mass transfer limitations in atrazine biodegradation even at high concentrations. Atrazine biodegradation by Gram-negative Polaromonas sp. Nea-C caused significantly less isotope fractionation (ε(C) = −3.5 ‰) than expected for hydrolysis by the enzyme TrzN (ε(C) = −5.0 ‰) and observed in Gram-positive Arthrobacter aurescens TC1 (ε(C) = −5.4 ‰). Isotope fractionation was recovered in cell-free extracts (ε(C) = −5.3 ‰)where no cell envelope restricted pollutant uptake. When active transportwas inhibited with cyanide, atrazine degradation rates remained constantdemonstrating that atrazine mass transfer across the cell envelopedoes not depend on active transport but is a consequence of passivecell wall permeation. Taken together, our results identify the cellenvelope of the Gram-negative bacterium Polaromonassp. Nea-C as a relevant barrier for atrazine biodegradation.
机译:持久性农药(如at去津)的生物降解通常在环境中处于低浓度时停滞不前。尽管在高浓度(> 1 mg / L)下传质并不会限制革兰氏阳性金黄色杆菌TC1对at去津的降解,但在痕量浓度(<0.1 mg / L)下出现了生物利用度限制的证据。为了评估生物降解对生物利用度的限制,对细胞壁生理学和转运蛋白的作用仍未完全了解。在这里,化合物特异性同位素分析(CSIA)表明,即使在高浓度下,细胞壁的生理特性(即革兰氏阴性细菌与革兰氏阳性细菌之间的差异)也会对阿特拉津生物降解施加传质限制。革兰氏阴性Polaromonas sp。对阿特拉津的生物降解作用。 Nea-C引起的同位素分馏(ε(C)= -3.5‰)明显少于酶TrzN水解所预期的(ε(C)= -5.0‰),并且在革兰氏阳性金黄色节菌TC1(ε(C)中观察到= −5.4‰)。在无细胞提取物中回收了同位素馏分(ε(C)= -5.3‰)没有细胞包膜限制了污染物的吸收。主动运输时被氰化物抑制,阿特拉津的降解速率保持恒定证明了阿特拉津在细胞膜上的传质不依赖于主动运输,而是被动的结果细胞壁渗透。两者合计,我们的结果确定了细胞革兰氏阴性细菌北极单胞菌的包膜sp。 Nea-C作为at去津生物降解的相关障碍。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号