首页> 美国卫生研究院文献>ACS AuthorChoice >Polarizable Force Field for CO2 in M-MOF-74Derived from Quantum Mechanics
【2h】

Polarizable Force Field for CO2 in M-MOF-74Derived from Quantum Mechanics

机译:M-MOF-74中CO2的极化力场源自量子力学

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

On the short term, carbon capture is a viable solution to reduce human-induced CO2 emissions, which requires an energy efficient separation of CO2. Metal–organic frameworks (MOFs) may offer opportunities for carbon capture and other industrially relevant separations. Especially, MOFs with embedded open metal sites have been shown to be promising. Molecular simulation is a useful tool to predict the performance of MOFs even before the synthesis of the material. This reduces the experimental effort, and the selection process of the most suitable MOF for a particular application can be accelerated. To describe the interactions between open metal sites and guest molecules in molecular simulation is challenging. Polarizable force fields have potential to improve the description of such specific interactions. Previously, we tested the applicability of polarizable force fields for CO2 in M-MOF-74 by verifying the ability to reproduce experimental measurements. Here, we develop a predictive polarizable force field for CO2 in M-MOF-74 (M = Co, Fe,Mg, Mn, Ni, Zn) without the requirement of experimental data. Theforce field is derived from energies predicted from quantum mechanics.The procedure is easily transferable to other MOFs. To incorporateexplicit polarization, the induced dipole method is applied betweenthe framework and the guest molecule. Atomic polarizabilities areassigned according to the literature. Only the Lennard-Jones parametersof the open metal sites are parameterized to reproduce energies fromquantum mechanics. The created polarizable force field for CO2 in M-MOF-74 can describe the adsorption well and even betterthan that in our previous work.
机译:从短期来看,碳捕获是减少人为导致的CO2排放的可行解决方案,这需要对CO2进行有效的能源分离。金属有机框架(MOF)可能为碳捕获和其他与工业相关的分离提供机会。特别是,具有嵌入的开放金属位点的MOF已被证明是有前途的。分子模拟是预测MOF性能的有用工具,甚至在合成材料之前也是如此。这减少了实验工作,并且可以加速针对特定应用的最合适MOF的选择过程。在分子模拟中描述开放金属位点和客体分子之间的相互作用是具有挑战性的。可极化的力场具有改善此类特定相互作用的描述的潜力。以前,我们通过验证能够再现实验测量值的能力来测试M-MOF-74中可极化力场对CO2的适用性。在这里,我们为M-MOF-74(M = Co,Fe,Mg,Mn,Ni,Zn),无需实验数据。的力场源自量子力学预测的能量。该程序很容易转移到其他MOF。合并显性极化,在框架和客体分子。原子极化率是根据文献分配。仅Lennard-Jones参数参数化的开放金属场所可从中再生能量量子力学。在M-MOF-74中为CO2创建的极化力场可以很好地描述吸附比我们以前的工作要好。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号