首页> 美国卫生研究院文献>ACS AuthorChoice >Heterodimers for in Situ Plasmonic Spectroscopy: CuNanoparticle Oxidation Kinetics Kirkendall Effect and Compensationin the Arrhenius Parameters
【2h】

Heterodimers for in Situ Plasmonic Spectroscopy: CuNanoparticle Oxidation Kinetics Kirkendall Effect and Compensationin the Arrhenius Parameters

机译:原位等离子体光谱的异二聚体:Cu纳米粒子氧化动力学柯肯德尔效应和补偿在Arrhenius参数中

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

The ability to study oxidation, reduction, and other chemical transformations of nanoparticles in real time and under realistic conditions is a nontrivial task due to their small dimensions and the often challenging environment in terms of temperature and pressure. For scrutinizing oxidation of metal nanoparticles, visible light optical spectroscopy based on the plasmonic properties of the metal has been established as a suitable method. However, directly relying on the plasmonic resonance of metal nanoparticles as a built-in probe to track oxidation has a number of drawbacks, including the loss of optical contrast in the late oxidation stages. To address these intrinsic limitations, we present a plasmonic heterodimer-based nanospectroscopy approach, which enables continuous self-referencing by using polarized light to eliminate parasitic signals and provides large optical contrast all the way to complete oxidation. Using Au–Cu heterodimers and combining experiments with finite-difference time-domain simulations, we quantitatively analyze the oxidation kinetics of ca. 30 nm sized Cu nanoparticlesup to complete oxidation. Taking the Kirkendall effect into account,we extract the corresponding apparent Arrhenius parameters at variousextents of oxidation and find that they exhibit a significant compensationeffect, implying that changes in the oxidation mechanism occur asoxidation progresses and the structure of the formed oxide evolves.In a wider perspective, our work promotes the use of model-system-typein situ optical plasmonic spectroscopy experiments in combinationwith electrodynamics simulations to quantitatively analyze and mechanisticallyinterpret oxidation of metal nanoparticles and the corresponding kineticsin demanding chemical environments, such as in heterogeneous catalysis.
机译:由于纳米粒子的尺寸小且在温度和压力方面通常具有挑战性,因此能够实时和在现实条件下研究纳米粒子的氧化,还原和其他化学转化的能力并非易事。为了检查金属纳米颗粒的氧化,已经建立了基于金属的等离子体性能的可见光光谱作为合适的方法。然而,直接依靠金属纳米粒子的等离子体共振作为内置探针来追踪氧化具有许多缺点,包括在后期氧化阶段中失去光学对比度。为了解决这些固有的局限性,我们提出了一种基于等离激元二聚体的纳米光谱方法,该方法可通过使用偏振光消除寄生信号来实现连续自参考,并在整个氧化过程中提供较大的光学对比度。使用Au-Cu异质二聚体,并将实验与时域有限差分模拟相结合,我们可以定量分析ca的氧化动力学。 30 nm尺寸的Cu纳米颗粒直至完全氧化。考虑到柯肯德尔效应,我们在各个位置提取相应的表观Arrhenius参数氧化程度,发现它们表现出明显的补偿作用效应,暗示氧化机理发生变化氧化进行,并且形成的氧化物的结构发展。从更广泛的角度来看,我们的工作促进了模型系统类型的使用结合原位光等离子体光谱实验用电动力学仿真来定量分析和机械化解释金属纳米颗粒的氧化及其相应的动力学在苛刻的化学环境中,例如在多相催化中。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号